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Abstract

The unmanageably large size of reference traces has spurred

the development of sophisticated trace reduction techniques.

In this paper we present two new algorithms for trace re-

duction | Safely Allowed Drop (SAD) and Optimal LRU

Reduction (OLR). Both achieve high reduction factors and

guarantee exact simulations for common replacement poli-

cies and for memories larger than a user-de�ned threshold.

In particular, simulation on OLR-reduced traces is accu-

rate for the LRU replacement algorithm, while simulation

on SAD-reduced traces is accurate for the LRU and OPT

algorithms. OLR also satis�es an optimality property: for

a given trace and memory size it produces the shortest pos-

sible trace that has the same LRU behavior as the original

for a memory of at least this size.

Our approach has multiple applications, especially in

simulating virtual memory systems; many page replacement

algorithms are similar to LRU in that more recently refer-

enced pages are likely to be resident. For several replace-

ment algorithms in the literature, SAD- and OLR-reduced

traces yield exact simulations. For many other algorithms,

our trace reduction eliminates information that matters lit-

tle: we present extensive measurements to show that the

error for simulations of the clock and segq (segmented

queue) replacement policies (the most common LRU approx-

imations) is under 3% for the majority of memory sizes. In

nearly all cases, the error is much smaller than that incurred

by the well known stack deletion technique.

SAD and OLR have many desirable properties. In prac-

tice, they achieve reduction factors up to several orders of

magnitude. The reduction translates to both storage sav-

ings and simulation speedups. Both techniques require lit-

tle memory and perform a single forward traversal of the

original trace, which makes them suitable for on-line trace

reduction. Neither requires that the simulator be modi�ed

to accept the reduced trace.
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1 Introduction

Trace driven simulation is a common approach to study-

ing virtual memory systems. Given a reference trace|a

sequence of the virtual memory addresses that are accessed

by an executing program|a simulator can imitate the man-

agement of a virtual memory system. Thanks to reference

traces, experiments on virtual memory management policies

can be reproduced in a controlled environment. Unfortu-

nately, these traces can be extremely large, easily exceeding

the capacities of modern storage devices even for traced ex-

ecutions lasting only a few seconds. The size of traces im-

pedes both their storage and processing. Trace reduction is

the compression of reference traces (either lossless or lossy)

so that they can be stored and processed e�ciently.

There are many existing methods for trace reduction.

However, these methods have undesirable characteristics for

virtual memory simulation: Some discard so much reference

information that the reduced trace introduces signi�cant er-

ror into the simulation of common page replacement poli-

cies. Other methods make it di�cult to control how much

information is discarded, and thus what size memories can

be simulated accurately. Some methods reduce the storage

costs without reducing the number of references and thus

the time required to process a trace.

We present two trace reduction methods|Safely Allowed

Drop (SAD) and Optimal LRU Reduction (OLR)|that do

not su�er from these de�ciencies. Both allow a user to con-

trol the degree of reduction by the speci�cation of a reduc-

tion memory size. SAD is the simpler of the two: it removes

references that are guaranteed not to a�ect the LRU and

OPT behavior of a trace, provided that the simulated mem-

ory sizes are no smaller than the reduction memory size.

Under the same assumption, the OLR algorithm yields the

shortest possible trace that can be used for exact LRU sim-

ulations in place of the original trace. OLR is useful both

because it provides greater reduction than SAD and because

its output gives a lower bound for the length of a reduced

trace. Both algorithms are e�cient in practice, and signi�-

cantly reduce storage and processing costs.

Guaranteeing accurate simulation for LRU and OPTmay

not seem exciting at �rst. If the trace were used only with

these policies, the simulation could be run only once and the

results stored and re-used. Our approach is e�ective, how-

ever, for simulations of many virtual memory replacement

policies. Nearly all replacement policies used or studied with

real workloads are either variants or approximations of LRU

in a weak sense that is su�cient for our trace reduction tech-

niques. This similarity of common page replacement policies



is hardly surprising|good replacement algorithms should

not evict pages that are in current use.

Variants of LRU (e.g., GLRU [FeLW78], SEQ [GlCa97],

FBR [RoDe90], EELRU [SKW98]) keep the k most recently

referenced pages in memory, even though not all m pages in

memory (m > k) are the m most recently accessed (as they

are in pure LRU). Our approach to trace reduction is appli-

cable in all such cases for a reduction memory size of at most

k. Even small values of k (10 to 100) are enough to allow

OLR and SAD to achieve reduction factors of up to several

orders of magnitude, while guaranteeing exact simulations.

SAD and OLR are also useful when studying approxi-

mations of LRU. The most prominent approximations are

clock and segq (segmented queue|also known as hybrid

FIFO-LRU [BaFe83] or segmented FIFO [TuLe81]). These

replacement policies ignore the same high-frequency refer-

encing information that nearly any replacement policy will

ignore, and that SAD and OLR discard from traces. This

information is ignored not because these are LRU approxi-

mations, but because references to recently used pages don't

a�ect replacement decisions, and because hardware often

does not support the e�cient collection of such information.

We show that the error introduced by SAD and OLR for

both clock and segq replacement simulations is small|

under 2% in number of faults in most cases. We also com-

pare SAD and OLR to stack deletion [Smit77], which is

a commonly known technique for removing high frequency

reference information from virtual memory traces. Given

reduced traces of comparable size created using all three

methods, SAD and OLR introduce less error on average into

clock and segq simulations.

Additionally, the ability of the SAD algorithm to produce

reduced traces valid for exact OPT simulations is a pleasant

side-e�ect: it means that a single trace can be used for all

experiments in a virtual memory study. Such studies often

compare a new algorithm to LRU and OPT.

2 Background and Motivation

Given the importance of trace reduction, it is not surprising

that there has been a wealth of research work on reduction

techniques. It is impossible to exhaustively reference all

the approaches|instead Section 2.1 presents an overview

and Section 2.2 positions our method relative to the most

closely related techniques. A good further reference is the

recent survey of trace-driven simulation by Uhlig and Mudge

[UhMu97].

2.1 Overview of Related Work

Like all data compression, trace reduction techniques are

divided into lossless and lossy approaches. In a lossless

approach, the entire trace can be reconstructed from its

reduced form, while lossy reduction does not preserve all

information in the original trace. Our technique is lossy

in nature but guarantees that certain kinds of simulations

(namely LRU and OPT simulations) are exact on the re-

duced traces.

Lossless Reduction. A straightforward approach to loss-

less trace reduction is to apply standard data compression

techniques on a trace. Simple Lempel-Ziv compression re-

sults into reduction factors of about 5 for typical traces

[UhMu97]. Higher degrees of reduction can be achieved

by combining compression algorithms with di�erential en-

coding techniques. The best known such instances are the

Mache [Samp89] and PDATS [JoHa94] systems, which ex-

plore spatial locality in the reference trace to encode it dif-

ferentially. Subsequently, standard text compression tech-

niques are applied and result into further reduction of its

size.

Lossless techniques can be used to reconstruct a trace

accurately for all purposes. Nevertheless, the compression

ratios achieved are not as high as those possible with lossy

trace reduction. More importantly, traces need to be uncom-

pressed before simulation is performed. Thus, the reduction

gains of lossless compression do not translate into simulation

speedups.

Lossy Reduction. When performing trace reduction, one

usually has some knowledge of the future uses of a program

trace. Lossy trace reduction techniques attempt to exploit

such knowledge so that the trace size is reduced dramatically

but enough information is maintained for the intended uses

of a trace.

The simplest lossy reduction technique is blocking. Block-

ing replaces references to individual addresses with refer-

ences to memory pages. Subsequent references to addresses

within the same page can then be reduced to a single refer-

ence. This reduction does not a�ect the simulation of time-

independent paging algorithms|algorithms that do not con-

sider the exact time of each reference in making replacement

decisions. Such algorithms are LRU, OPT, etc., but not, for

instance, Working Set [Denn68]. Blocking is so widely ap-

plicable that it is practically assumed in most simulation

work. For the remainder of this paper, when we refer to an

original trace, we are referring to a blocked trace.

Recent work on trace reduction includes the technique

of Agarwal and Hu�man [AgHu90]. Whereas most lossy

reduction techniques concentrate on the temporal locality of

a program trace, their approach exploits spatial locality and

results in an extra signi�cant factor of reduction.

Other trace reduction methods include trace sampling

and trace stripping (e.g., see [Puza85]). Both are better

suited for high-speed hardware cache simulations, as they

introduce inaccuracy into fully-associative virtual memory

policy simulations.

The majority of lossy trace reduction methods, however,

are oriented towards virtual memory simulations. These

techniques address the same concerns as our algorithms and

are directly comparable to them. The next section discusses

such related reduction techniques in detail.

2.2 The Value of Our Techniques

Our approach �lls a prominent gap in the spectrum of trace

reduction techniques. Most existing techniques either do

not guarantee accurate simulations or do not achieve the

same high reduction factors as our method. We isolate three

approaches that stand out as particularly related to ours.

� Smith's stack deletion (SD) [Smit77] consists of only

keeping references that cause pages to be fetched to

an LRU memory of size k. SD is directly comparable

to the SAD algorithm. Both techniques are very sim-

ple and have similar preconditions: both require that

the reduced trace be used with memories no smaller

than the memory used for reduction. Nevertheless,

SAD guarantees that no error is introduced for LRU

and OPT simulations, unlike SD. Smith argued exper-

imentally that the error of SD is small. However, that

error is small only if the depth of the stack (i.e., the



size of the memory used for reduction) is much smaller

than the simulated memory (typically 20% to 50% of

its size). Hence, SAD can use a much larger reduc-

tion memory, which will yield greater reduction, and

still achieve exact results. Additionally, we show that

SD introduces larger error than both SAD and OLR

for clock and segq simulations for reduced traces of

the same size. In conclusion, SAD and OLR are both

safer (i.e., introduce less error) and more e�ective (i.e.,

yield smaller traces useful for comparable purposes)

than SD.

� The technique of Co�man and Randell [CoRa70] can

be seen as an alternative to both SAD and OLR for

LRU simulations. Their approach consists of using

the LRU behavior sequence (i.e., the sequence of pages

fetched and evicted) for an LRU memory of size k to

perform exact simulations of LRU memories of size

larger than k. The behavior sequence is typically very

short, even for small values of k. The biggest draw-

back of the Co�man and Randell approach, however,

is that the product of reduction is not itself a trace.

For instance, it is not clear how the LRU behavior se-

quence of a trace can be used for OPT simulations.

In the best case, the simulator as well as any other

tools (e.g., trace browsers) will need to change to ac-

cept the new format. This is a practical burden to

the simulator implementors and makes it hard to dis-

tribute traces in a compatible form. This is the main

reason why this simple technique has not become more

widespread. Our OLR algorithm is complementary to

the approach of Co�man and Randell: it o�ers an ef-

�cient way to turn the behavior sequence format into

the shortest possible trace exhibiting this LRU behav-

ior. Other advantages of our algorithms exist. For

instance, SAD is also applicable to OPT simulations

and we show that both SAD and OLR introduce little

error for simulations of clock and segq.

� Just like our techniques, the reduction method used

by Glass and Cao [GlCa97] is applicable to exact vir-

tual memory simulations. Like Co�man and Ran-

dell's method, the Glass and Cao technique su�ers

from needing to modify the simulator to accept the

reduced trace format. The modi�cations are far from

trivial, and it can be hard to use the reduced trace in-

formation for simulations of policies other than those

studied in [GlCa97] (LRU, OPT, and SEQ|an exper-

imental replacement algorithm). Another drawback

of this technique is its lack of control over the in-

teresting memory ranges. It is not possible to spec-

ify directly the memory sizes for which the simulation

should be exact. Instead, the trace �lter allows only

indirect control over the minimum memory sizes for

which the simulation is valid; worse, that minimum

size cannot be determined until after the trace has

been gathered. The method seems to be less e�cient

than our approach, at least for LRU simulations. We

did not have access to the traces used by Glass and

Cao in unreduced form, but were able to derive the

OLR-reduced form of these traces (directly from the

Glass and Cao reduced traces). This was several times

shorter than the reduced form used by Glass and Cao,

both in terms of absolute size and in terms of signif-

icant events. The detailed results of this comparison

can be found in [KSW98].

Other applications of our algorithms are possible. Be-

cause of its optimality properties, OLR is ideal for the pur-

poses of trace analysis. It provides an estimate of the amount

of reordering done inside an LRU memory. This is useful for

evaluating whether a trace will behave similarly under LRU

and under LRU approximations (e.g., clock or segq im-

plementations). Another possible application of OLR is in

trace synthesis. Given any exact sequence of fetched and

evicted pages from an LRU memory, OLR can produce a

minimum length trace that will cause the same fetches and

evictions. This could provide an alternative to statistical

trace synthesis techniques (e.g., [Baba81]).

Finally, we should mention that our techniques are com-

plementary to reduction algorithms that exploit di�erent

principles. Since the output of our algorithms is itself a

trace, other trace reduction techniques can be applied (e.g.,

[JoHa94, AgHu90]). As we will see, simple �le compres-

sion of our reduced traces with the gzip utility yields much

smaller �les, further decreasing storage requirements.

3 The Algorithms

3.1 Safely Allowed Drop (SAD)

Full traces commonly contain a large number of references

that are ignored by virtual memory replacement policies.

These references account for the majority of space required

to store a trace, and consume the majority of time required

to perform a virtual memory simulation. Safely Allowed

Drop (SAD) removes references from a trace that do not

a�ect the order of fetches into and evictions from an LRU

memory of some user-speci�ed size.

We will show that SAD allows for exact simulations not

only of LRU, but also of OPT. We will also show, in Section

4, that it introduces very little error into the simulation of

LRU approximations such as clock and segq.

3.1.1 Finding References to Drop

For any two references to the same page in a program trace,

we can de�ne their LRU distance as the number of distinct

other pages referenced between the two references. The idea

behind SAD is simple: For any three references to the same

page in a trace, if the LRU distance of the �rst and third

reference is d, then removing the middle reference does not

a�ect the outcome of LRU and OPT simulations on memo-

ries of size greater than d. Section 3.1.3 describes why the

elimination of these middle references has no e�ect on LRU

and OPT.

SAD is an application of this observation. The user spec-

i�es a reduction memory size, k. Then SAD searches the

trace from left to right, to �nd triplets of the above form|

references to the same page, such that the LRU distance

between the �rst and third reference is less than k. All mid-

dle references of such triplets are eliminated.

Figure 1 shows three references to page A. The LRU dis-

tance between the �rst reference A

first

and the third ref-

erence A

third

is 4, as there are four distinct pages (B, C, D,

and E) that are referenced between A

first

and A

third

. If the

memory size chosen for reduction is at least 5, then we can

safely drop A

second

without a�ecting the results of an LRU

or OPT simulation.

Nearly all programs frequently reference pages that were

recently used. Due to this temporal locality, references elim-

inated by SAD constitute the vast majority of references in

usual program traces, even for small reduction memories.



Afirst Asecond Athird

... A B C A D E A...

Figure 1: A

second

can be eliminated because the LRU dis-

tance between A

first

and A

third

is less than the reduction

memory size of 5 pages.

3.1.2 SAD Algorithm Implementation

SAD needs only to determine LRU distances between pairs

of references to the same page in order to �nd middle ref-

erences that can be eliminated. The search proceeds from

left to right, allowing reduction to be performed in a single

forward traversal of the original trace.

As the trace is processed, the algorithm maintains an

LRU queue of the requested size. It also stores some of the

most recently input references from the original trace. By

keeping both the LRU queue and a recent history of refer-

ences, the algorithm can �nd groups of three references to

the same page where the LRU distance between the �rst

and third references is less than the reduction memory size.

Therefore, this information is enough to �nd middle refer-

ences that can be eliminated.

Although it is necessary to store recent references to �nd

these triplets, the number of references can be bounded. It

is only necessary to store at most 2k + 1 of the most recent

references in order to �nd the LRU distance between �rst

and third most recent references to a page.

1

With something

like a hash table to help �nd recent references to pages,

performing this reduction is little more than an augmented

LRU queue simulation; it can be executed e�ciently. For

more details, we refer you to our implementation of SAD at

<http://www.cs.utexas.edu/users/oops/>.

3.1.3 Exact Simulation of LRU and OPT

If SAD reduces a trace using a k page memory, then that

reduced trace can be used for the exact simulation of both

LRU and OPT memories that are at least k pages.

Recall the de�nition of LRU distance: Given two refer-

ences to the same page, the LRU distance between them is

the number of other distinct pages referenced between those

two references. Therefore, if the LRU distance between two

references to a page is less than k, then that page will not be

evicted from an LRU memory of at least k pages.

First, consider an LRU queue of unbounded length and

its contents for both the unreduced and the reduced trace.

By dropping references, SAD allows pages to drift further

away from the top of the LRU queue, as each page is refer-

enced less often. These pages, however, are guaranteed to be

in the �rst k positions of the queue; each eliminated refer-

ence is following by another reference to the same page that

is an LRU distance less than k from the previous reference.

Other pages are not adversely a�ected by removing a

reference. Their position in the LRU queue can only be

1

The implementation needs to store at most the two most recent

references for those pages in k-page LRU queue, plus a third reference

to one of those pages as a triplet is found. If a triplet is found, the

middle reference is eliminated, and again only two recent references

for that page are stored. Triplets could not possibly be found for

other pages, so their recent references need not be stored.

closer to the top for the reduced trace than it would have

been for the original one. The only positions in the queue

that may have di�erent contents for reduced traces are the

ones from 1 to k. Therefore, the results of LRU simulations

for memories of size k or larger will be identical for the

reduced and the unreduced trace.

We illustrate this argument by examining Figure 1. For a

memory of size 5 or larger, A will remain in memory between

A

first

and A

third

. The middle reference A

second

has no

e�ect on LRU replacement and if it is dropped, the reference

A

third

will ensure that A is not incorrectly evicted.

SAD-reduced traces also yield exact simulations for OPT

memories of at least k pages. Consider again the three ref-

erences in Figure 1. When OPT must choose a page for

eviction, it selects the resident page �rst referenced furthest

in the future. We can show, case by case, how the removal

of A

second

does not a�ect the replacement decisions made

by OPT:

� If OPT is processing references before A

first

, then the

removal of A

second

will not a�ect its eviction choices, as

A

first

is the reference that OPT will use to determine

whether A is evicted.

� If OPT is processing references between A

first

and

A

third

, then we already know that fewer than k distinct

pages are referenced between those two references to

A. Note also that the page currently being referenced is

not already in memory (since it caused a replacement)

and cannot be a candidate for eviction, making the

number of other distinct referenced pages preceding

A

third

less than k � 1. Therefore, if the memory size

is at least k, page A cannot be the one �rst referenced

furthest into the future (because of reference A

third

).

The absence of A

second

does not a�ect the replacement

decision.

� If OPT is processing references that follow A

third

, then

none of these three references to page A will a�ect de-

cisions. OPT examines future references to make its

decisions, so the missing reference A

second

will have no

e�ect.

3.2 Optimal LRU Reduction (OLR)

The SAD algorithm obtains signi�cant reduction factors for

actual traces. Nevertheless, SAD-reduced traces are not nec-

essarily the smallest for which either LRU or OPT simu-

lations are exact. For instance, consider the reference se-

quence:

A B C B A C D A B D

Applying SAD with a reduction memory of 3 pages to

this trace yields no reduction. Nevertheless, the shorter

trace

A B C A D B

has exactly the same LRU behavior as the original for a

memory of size 3 or larger. Recall that the LRU behavior

of a trace for a memory of size k is the sequence of pairs of

pages fetched into and evicted from memory when the given

trace is applied. The LRU behavior of the two above traces

for a memory of size 3 is:

hA; NF i ; hB; NF i ; hC; NF i ; hD; Bi ; hB; Ci

where the special value NF denotes that the memory is not

full and, hence, the insertion of one element does not cause

the eviction of another.

The importance of LRU for virtual memory systems has

motivated the design of the OLR algorithm for computing



such optimally short sequences. OLR takes a reference trace

as input and outputs the smallest trace that has the same

LRU behavior as the input for a memory of size k or larger.

The output of OLR is only a function of the behavior|

two di�erent input traces exhibiting the same behavior for

an LRU memory of size k will produce the same output.

Hence, the �rst step of OLR is to simulate the input trace

on an LRU memory of size k and derive its behavior se-

quence. That sequence is the input to the olr core algo-

rithm shown in Figure 2. Following common terminology,

we will often use the term block as a synonym for page and

touch as a synonym for reference.

Some explanation of the conventions followed in the al-

gorithm description is necessary: The input sequence, be-

havior, is represented as an array for simplicity. The special

value Last signals the end of the sequence. olr core uses

a data structure queue, which is an LRU queue augmented

with two operations:

� blocks after(block): returns the set of blocks touched

less recently than block, but still in the data structure

(i.e., within the last k distinct blocks touched). If block

has the special value NF , the returned set is empty

(this is useful for uniform treatment of the boundary

case where the structure is being �lled up).

� more recent(block

1

; block

2

): returns a boolean value

indicating whether block

1

was touched more recently

than block

2

. If block

1

has the special value Lower-

Limit, or block

2

has the special value NF , False is

returned.

Due to space limitations we cannot present an extensive

analysis and proof of correctness of the olr core algorithm.

Such an analysis can be found in [Smar98]. Here we will dis-

cuss the algorithm at an intuitive level which will hopefully

convey some of the insights behind its development.

Recall that olr core takes as input the sequence repre-

senting the behavior of a trace for an LRU memory of size

k. This behavior sequence consists of pairs of fetched and

evicted pages for the LRU memory. The sequence of refer-

ences to fetched pages has to be a subsequence of the output

of olr core, as every reference that causes a fetch opera-

tion must remain in the reduced trace so that the sequence

of fetches is preserved. The purpose of olr core is to �nd

the minimum set of extra references that need to be added

so that the sequence of evictions is also preserved. That is,

each reference in the reduced trace either causes the fetch

and eviction speci�ed by the behavior sequence, or it causes

a reordering of the simulated LRU queue such that a later

fetch will cause the correct eviction.

At every point during the algorithm's execution, the queue

data structure reects the contents of an LRU queue of size

k, to which the output (up to the present point) has been

applied. At every iteration of the outer loop of the algo-

rithm in Figure 2 (lines 4-20) the current index points to

successive elements of the input behavior sequence.

For each iteration of the outer loop, before a reference

that causes a fetch is output (by line 18), all pages in the

LRU queue that were less recently referenced than the cor-

responding expected evicted page are touched. The set

must touch contains exactly these pages (line 5), and lines

16-17 ensure that they get touched. This way, for a refer-

ence causing a \fetch", the least recently touched page in the

LRU queue is the corresponding evicted page, as indicated

by the input.

Before we describe the essence of olr core it is useful

to briey review a simple algorithmic problem:

Given an LRU queue and a desired recency order-

ing for some of the pages currently in the queue,

what are the fewest page references required to

reorganize the queue so that the desired ordering

holds?

One can show that there is a simple algorithm to produce

such a minimal sequence of references:

Examine the desired ordering in inverse order

(i.e., least recent element �rst). Find the �rst

page that is out-of-order in the queue (i.e., it is

less recent than its previous page in the desired

ordering). Produce references for this page and

all subsequent pages in the desired ordering.

This is exactly the algorithm implemented by the inner loop

of the olr core algorithm (lines 7-15). The LRU queue

that is modi�ed is queue. The desired ordering is described

by the evicted pages in the smallest subsequence of behav-

ior that begins at position current+ 1 and contains events

where a page is fetched in the LRU queue and the same

page is evicted. The latter condition is detected using the

fetched in future set in the algorithm of Figure 2, which con-

tains the pages fetched after position current in the behav-

ior sequence. The lookahead variable is used as an index

for elements of behavior beyond position current. When the

evicted part of such an element is found in fetched in future

(line 8), the inner loop ends.

In short, the essence of the olr core algorithm is that

for each reference to a page not in the LRU queue, as few

as possible extra references to pages already in the LRU

queue are produced, so that the recency order in the queue

matches the expected eviction order up to the point where a

page is evicted that has not yet been last fetched. Intuitively,

the reason the latter condition is necessary is that the en-

tire LRU queue will need to be reorganized (i.e., every page

will need to be touched) between the points that a page is

fetched and the same page is evicted. Hence, no bene�t can

be achieved by \looking further" than the eviction of pages

that have not yet been last fetched. No reordering should

be done, since all pages will be reordered later, when they

are last referenced before one of them is evicted. The above

argument conveys parts of the intuition behind the devel-

opment of the algorithm but does not constitute a proof of

overall minimality for its output. A rigorous proof (as in

[Smar98]) is quite lengthy, and, thus, beyond the scope of

this paper.

Finally, we should note that olr core is very e�cient,

so that the main component of the running time of OLR

is the LRU simulation performed on the input trace to de-

rive its behavior sequence [Smar98]. That is, OLR execu-

tion is about as fast as a simple LRU simulation on the

input trace for a memory of size k. The algorithm per-

forms just a single forward pass with bounded look-ahead

(at most k elements) and, thus, is ideal for online applica-

tions. Our free implementation of OLR can be found at

<http://www.cs.utexas.edu/users/oops/>.

3.3 Trace Manipulation Issues

In our discussion of SAD and OLR we used a simpli�ed form

of reference traces (only containing address information for

the page being referenced). Real trace formats may need

to contain other information, such as the kind of reference

(instruction, read, or write), the instruction causing it, the

program counter (or any timer info), etc. Additionally, a

trace may need to be re-blocked so that experiments can



olr core(behavior, k)

1 lookahead 0; current 0; fetched in future �; previous evict LowerLimit

2 queue �(k)

3 . �(k) denotes an empty LRU queue of size k

4 while behavior[current] 6=Last

5 do must touch queue:blocks after(behavior[current]:evict)

6 lookahead done False

7 while behavior[lookahead] 6= Last and :lookahead done

8 do if behavior[lookahead]:evict 2 fetched in future

9 then lookahead done True

10 else if queue:more recent(previous evict; behavior[lookahead]:evict)

11 then produce reference(behavior[lookahead]:evict)

12 must touch must touch n fbehavior[lookahead]:evictg

13 previous evict behavior[lookahead]:evict

14 fetched in future fetched in future [ fbehavior[lookahead]:fetchg

15 lookahead lookahead+ 1

16 for x 2 must touch

17 do produce reference(x)

18 produce reference(behavior[current]:fetch)

19 fetched in future fetched in future n fbehavior[current]:fetchg

20 current current+ 1

produce reference(block)

1 queue:touch(block)

2 output(block)

Figure 2: olr core accepts the sequence of fetched and evicted pages for a k page LRU memory, and produces the shortest

reference trace that would cause the same behavior for that same memory.

be conducted for di�erent page sizes. Such standard trace

manipulation is perfectly compatible with both SAD and

OLR. For instance:

� Re-blocking: a reduced trace for a reduction memory

of size k can be re-blocked for any larger page size and

simulations will continue to be accurate for memories

of size k or larger (note that the size refers to the

number of pages|the actual minimummemory size in

Kbytes for which simulations are exact is larger after

the re-blocking). This is a consequence of the stack

algorithm [MGST70] properties of LRU and OPT.

� Maintaining Dirtiness Information: many virtual

memory studies measure the cost of writing dirty pages

to a backing store upon eviction. Such studies re-

quire traces in which each reference is marked as a

read or write operation. Both SAD and OLR can be

augmented to tag references with the appropriate op-

eration.

In order to maintain the dirtiness information about

each page in reduced traces, the reduction methods

must notice which pages would be modi�ed by a write

operation while in a k page LRU memory. Since both

methods maintain such a memory during reduction, an

implementation can record whether a page is dirtied

while in that memory. If a page is dirtied while in the

reduction memory, then the last reference to that page

before it is evicted is marked as a write operation. A

simulation based on the reduced trace will mark the

page as dirty before it is evicted from a k page or larger

memory.

� Maintaining Timing Information: timing infor-

mation is trivial to maintain for SAD, since the algo-

rithm only removes references from the original trace.

For OLR, where reference reordering may occur, it

makes sense to keep time information for references

causing a page to be fetched into memory. These are

guaranteed to be exactly the same (and, hence, in the

same order) as in the original trace.

4 Experimental Results

We applied our trace reduction methods to traces collected

both on Windows NT and UNIX platforms. The nine Win-

dows NT traces include the full set of the commercially dis-

tributed traces gathered using the utility Etch [LCBAB98].

These include well-known Windows NT applications (Ac-

robat Reader, Netscape, Photoshop, Powerpoint, Word) as

well as various other programs (CC, Compress, Go, Vortex).

The six UNIX traces (Espresso, GCC, Grobner, Ghostscript,

Lindsay, P2C) were gathered using VMTrace, our portable

tracing tool based on user level page protection; these traces

are freely available on our web site. The Windows NT traces

were blocked for 4 Kbyte pages so that they would be ap-

propriate for virtual memory simulations. The UNIX traces

were generated as references to 4 Kbyte pages.

In this section, we show the reduction factors achieved

over a range of reduction memory sizes. We also used re-

duced traces to simulate both the clock and segq replace-

ment policies. These two policies cannot be simulated ex-

actly using reduced traces, but we show that the error in-

troduced into their simulation is small in practice. We also

show that the error introduced is signi�cantly less than with

stack deletion [Smit77], a well known reduction method. We

chose to simulate clock and segq because they are the two

replacement policies most used in real systems. As approxi-

mations of LRU, they are similar to many replacement poli-

cies that discard information about references to the most

recently used pages.



4.1 Reduction Results

Each of the traces was reduced using both SAD and OLR

over a range of reduction memory sizes. Recall that the

\original" traces are blocked on 4 Kbyte pages, and yet are

hundreds of Mbytes to a few Gbytes each. We measured the

number of bytes required to store the original trace and each

of the reduced traces. Because each reference in these traces

is a text representation of the virtual memory page number

in hexadecimal, each record comprises at most (and usually

exactly) �ve bytes. Thus, there is a direct correspondence

between number of bytes and number of records in a trace.

The plots in Figure 3, show the reductions achieved by

SAD and OLR on six of the �fteen original traces. The

curves shown plot the reduction ratio achieved as a func-

tion of increasing reduction memory size. We chose to show

the reduction results from three of the original traces per

platform due to space limitations. The remaining programs

show similar increase in reduction with memory size, as well

as equally high reduction factors.

Note that the reduction factors increase quickly as the

memory size grows. The reduction achieved for a particu-

lar reduction memory size is a direct result of the locality

exhibited by the traced program. Since the vast majority

of references are to pages that have been recently used, a

small reduction memory can yield large bene�ts. Note that

the size of the OLR-reduced trace is a good measure of pro-

gram locality: it is the smallest trace that has the same LRU

behavior as the original for a memory at least as large as the

reduction memory.

Since many virtual memory systems simulate hundreds

or even thousands of pages, traces can be made hundreds of

times smaller while still being appropriate for experimental

studies. Using a reduced trace can allow a researcher to per-

form simulations that much more quickly, as the simulation

time is usually proportional to the length of the input trace.

Also note that SAD achieves reduction factors close to

those of OLR. Although SAD is a much simpler algorithm,

it provides nearly optimal reduction, while still allowing for

exact OPT simulation as well as exact LRU simulation.

It is hard to tell from our plots if high reduction ratios

can be achieved for small reduction memory sizes. As we

show in the table below, both SAD and OLR perform very

well even for very small reduction memories (20 pages for

the Windows NT plots and 5 pages for the Unix plots, as

the Windows NT programs have much larger footprints).

It is worth noting that our reduced traces can be further

compressed by applying lossless trace reduction techniques

(for instance, [JoHa94, Samp89]). Even though we did not

experiment with any such methods, we found that SAD and

OLR reduced traces are highly compressible using standard

text compression tools. The next table shows the compres-

sion factors achieved by the Unix gzip utility on our reduced

traces (the ratios shown are \reduced trace size" divided by

\compressed reduced trace size"). The results below are

not representative for all reduction memory sizes. As reduc-

tion memories become larger (and reduced traces become

dramatically smaller), compression factors shrink. Eventu-

ally, compression ratios become almost as low as 3:1, which

is largely an artifact of representing each reference as text.

These traces, however, are thousands of times smaller than

the originals, and their storage requirements are negligible.

4.2 Clock and Segq Simulations

We simulated both the clock and segq replacement poli-

cies using traces reduced by SAD, OLR, and Smith's stack

Trace Reduction Reduction

memory ratio

size (SAD) (OLR)

acroread 20 62.01 75.72

cc1 20 16.12 19.52

compress 20 7.32 8.11

go 20 5.16 6.34

netscape 20 16.76 20.24

photoshop 20 61.06 72.76

powerpoint 20 10.81 12.66

vortex 20 7.04 8.68

winword 20 14.62 18.01

espresso 5 29.03 43.44

gcc 5 3.39 4.31

grobner 5 8.17 10.78

ghostscript 5 9.97 12.26

lindsay 5 8.66 10.82

p2c 5 5.39 6.91

Figure 4: Even for small reduction memories, signi�cant

reduction factors can be achieved.

Trace Reduction gzip compression

memory ratio

size (SAD) (OLR)

acroread 20 31.21 25.48

cc1 20 19.3 18.59

compress 20 17.55 14.46

go 20 13.77 12.25

netscape 20 26.48 21.52

photoshop 20 74.76 64.11

powerpoint 20 30.73 25.08

vortex 20 40.52 42.12

winword 20 38.5 32.74

espresso 5 13.74 14.03

gcc 5 13.6 11.67

grobner 5 11.58 10.36

ghostscript 5 22.2 20.55

lindsay 5 6.8 5.36

p2c 5 9.71 8.69

Figure 5: Reduced traces are often highly compressible.

deletion (SD) methods. The results of these simulations

were compared with simulations based on the original, unre-

duced traces.

We chose these two policies not only because they are so

common, but also because they are similar to any page re-

placement policy likely to be used in practice. They are ap-

proximations of LRU because recency information tends to

be an excellent predictor of future reference patterns. They

also discard information about recently referenced pages be-

cause of the hardware available in all machines. If hardware

reference bits are supported, clock can be used. segq was

designed for machines that did not have such hardware sup-

port, yet allowed e�cient recency based page replacement.

Our clock simulator simulated a single-hand, two-reference-

bit implementation. For a clock-managed memory, there

are reference bits associated with each resident page. When

a resident page is referenced, its primary reference bit is set.

If a non-resident page is referenced, some other page

must be chosen for eviction. If we imagine the resident pages
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Figure 3: SAD and OLR reduction factors over many reduction memory sizes for six of the �fteen traces. The reduction

factors for the traces not shown grow similarly with the reduction memory size.



to be arranged circularly, a clock hand sweeps around that

circle. If the hand encounters a page with either of its two

reference bits set, it shifts the contents of the primary ref-

erence bit into the secondary, and then clears the primary.

The hand then examines the next page.

When the clock hand encounters a page whose reference

bits are not set, that page is chosen for eviction. This mech-

anism is designed so that clock selects a page that has not

been referenced recently. Any recently referenced page is

likely to have at least one of its reference bits set.

We also simulated the segq replacement policy (seg-

mented queue|also known as hybrid FIFO-LRU [BaFe83]

or segmented FIFO [TuLe81]) with the original and reduced

traces. This replacement policy orders resident pages in two

segments. The �rst segment is a FIFO queue that holds

some �xed number of the most recently referenced pages.

Pages evicted from the �rst level are inserted at the front

of the second level, an LRU queue. Pages evicted from the

LRU queue are evicted from memory.

4.2.1 Error Introduced by SAD and OLR

While SAD and OLR cannot be used to perform exact sim-

ulations of clock and segq, we found that little error is

introduced into simulation if the ratio of simulation mem-

ory to reduction memory is su�ciently large. (The error is

de�ned as the absolute value of the di�erence in the num-

ber of page faults incurred using the unreduced and reduced

traces.) In practice, a ratio of 5:1 yields uniformly low er-

ror. A ratio of 2:1 also yields small error for the majority of

memory sizes, but sometimes introduced unacceptable error

in excess of 10%|large enough to lead to erroneous con-

clusions due to inaccurate results. Programs that occupy

a small footprint yielded our largest errors, while programs

with a large footprint su�ered the smallest errors. Overall,

the larger this ratio, the better the results will be.

Due to space constraints, we cannot show the results

of each simulation with each reduced trace (many results

are shown in the next section in comparison with the stack

deletion method). However, we summarize them in a few

observations. These observations are valid for simulations in

which the simulated memory to reduction memory ratio is

at least 5:1, and at least 1,000 paging events occur (a virtual

memory study with traces causing fewer faults is unlikely).

� For the vast majority of memory sizes, less than 2%

error was observed for both reduction methods.

� Under clock, SAD never introduced more than 3%

error. OLR performed slightly worse than SAD on

average, and in isolated cases exhibited nearly 10%

error.

� Under segq, neither OLR nor SAD exhibited more

than 6% error. OLR performed as well as SAD on

average.

� The reduced traces sometimes caused too manymisses,

and sometimes too few. However, there was no pattern

nor bias for reduction or increase in miss numbers.

� The smaller the footprint of the program, the larger

the observed error. For programs with larger foot-

prints (at least hundreds of pages), error was often

near zero for all memory sizes.

It is crucial to note that the ratio between the simulation

memory size and the reduction memory size has a large e�ect

on how much error is introduced. Most virtual memory

studies are of simulated memories with sizes in the hundreds

or thousands of pages. We have shown that large reduction

factors can be achieved with reduction memories whose sizes

are in the tens of pages. It should therefore be possible to

produce signi�cantly reduced traces with a ratio of at least

10:1 to allow for acceptably accurate simulations.

4.2.2 Comparison to Stack Deletion

An often referenced form of trace reduction is Smith's stack

deletion (SD) [Smit77]. It is interesting to compare SD to

our reduction techniques because its value has been demon-

strated exclusively through experimental arguments. SD

does not guarantee exact simulations, but has been shown

to introduce small error into the simulation of replacement

policies (namely, LRU, OPT, and clock). We compared

SAD and OLR to SD with our suite of �fteen traces and

found that our techniques, particularly SAD, consistently

yield smaller error.

For each reduction method, we chose a reduction memory

size that would yield a reduced trace that was 100 times

smaller than the original (that is, the traces for all three

methods were approximately the same size). An alternative

would be to use the same reduction memory size for each

method. This would be unfair for SD since it keeps less

information than both OLR and SAD.

We performed clock and segq simulations using each

reduced trace. A subset of the clock results are shown

in Figure 6. These plots show the percent error (i.e., dif-

ference in number of page faults) introduced by SAD and

SD on clock simulations. For clarity, we omitted the OLR

results (including them would obscure parts of the plots.)

The traces from go and grobner were chosen to represent

programs that use a small footprint, with 61 and 228 pages

respectively. The programs gcc and ghostscript occupy

medium sized footprints of 450 and 551 pages each. acrobat

reader and netscape are larger footprint programs that use

1914 and 1022 pages, respectively.

For each of the programs, SAD and OLRmatch or exceed

the accuracy provided by SD. Although its results are not

shown, on average OLR introduces more error than SAD

but less than SD. SAD provides smaller error than SD at

almost every memory size.

Note that the leftmost portion of each plot contains large

error, as simulations of memories comparable to the reduc-

tion memory size are inaccurate. For all of the plots, the

error drops signi�cantly around a ratio of 2:1 of simulated

memory size to reduction memory size. In most cases, SD

reaches a reasonable level of error at a slightly smaller mem-

ory size than SAD, as it used a smaller reduction memory

size.

Smith claimed that a ratio of 2:1 would be su�cient for

experimentation with SD. We found that, with the 2:1 ra-

tio, there is signi�cant error in speci�c cases. For example,

SD introduces more than 30% error into the simulation of

grobner at a ratio of 4:1. It also introduces more than 35%

error into go at a ratio of about 3.5:1. SAD and OLR also

su�er unacceptably large error at these ratios in isolated

cases. Consequently, we recommend a ratio of at least 5:1

for uniformly negligible error.

For segq simulations the results were similar, although

less error was introduced on average for all reduction meth-

ods. We again selected six traces from the original �fteen,

as the results of these are similar to the rest. Note that

the error introduced is irregular; the behavior of segq is
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Figure 6: The absolute percent error (by number of faults) introduced into clock simulations by reduced traces from SAD

and SD. Notice that reduction memory sizes were chosen so that each reduced trace was approximately 100 times smaller

than its original.



dominated by FIFO, which is not a stack algorithm and can

produce unpredictably di�erent results with slightly di�er-

ent memory sizes.

In the plots shown in Figure 7, the size of the FIFO seg-

ment is �xed, and the percent error is shown for increasing

LRU segment sizes. The FIFO segment size chosen for these

plots is approximately twice the reduction size for SAD.

Thus, the total simulated segmented queue memory is at

least twice as large as the reduction memory for both reduc-

tion methods.

For both programs, SAD and SD introduce su�ciently

small error as to be acceptable for most studies. SAD intro-

duces less error for many memory sizes, although at a few

memory sizes SD is the better method. Although it is not

shown, OLR performed even better for segq than it did for

clock, and its performance was comparable to SAD's. For

many of these traces, the error introduced by either method

is not signi�cant.

Overall, SAD and OLR would be preferable to SD in

practice. While all three introduce small error into simu-

lations, SD introduces slightly more on average, and SAD

consistently introduces the least. Further, SAD and OLR

both allow for the exact simulation of LRU (and LRU vari-

ants like GLRU [FeLW78], SEQ [GlCa97], FBR [RoDe90],

EELRU [SKW98]), and SAD allows for the exact simulation

of OPT.

5 Conclusions

Storing and processing long memory reference traces is costly.

We have proposed SAD and OLR: two new methods for

drastically reducing traces to alleviate both storage and pro-

cessing requirements. These reduction methods are designed

to eliminate information about references to the most re-

cently used pages. Both allow for the exact simulation of

LRU memories of a minimum size chosen explicitly by the

user. SAD also allows for the exact simulation of OPT mem-

ories.

SAD and OLR are invaluable for realistic virtual mem-

ory studies. Most studied virtual memory policies are either

variants or approximations of LRU. Traces reduced with

SAD or OLR provide for accurate simulations with LRU

variants (for memories larger than a user-de�ned thresh-

old). Additionally, we have shown that our reduced traces

introduce very little error into the two most commonly used

LRU approximations, clock and segq.

We have implemented SAD and OLR, and have made

them freely available on our web site. These utilities have

been useful to us in our studies, and we invite others to take

this portable C++ code and use it in theirs. Both reduction

tools can be used o�-line with existing traces, or online as

traces are gathered.
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Figure 7: The absolute percent error (by number of faults) introduced into segq simulations by reduced traces from SAD

and SD. For each plot, the FIFO segment size is �xed, and the plot shows the error introduced for every possible size of LRU

segment that could follow the FIFO segment. The x-axis shows the total memory size obtained by combining the FIFO and

LRU segments.


