
i
i

“K23166” — 2015/1/9 — 17:35 — page 155 — #181 i
i

i
i

i
i

Chapter 10

Simulation

Simulations provide a powerful way to answer questions and explore properties of statistical
estimators and procedures. In this chapter, we will explore how to simulate data in a variety
of common settings, and apply some of the techniques introduced earlier.

10.1 Generating data

10.1.1 Generate categorical data

Simulation of data from continuous probability distributions is straightforward using the
functions detailed in 3.1.1. Simulating from categorical distributions can be done manually
or using some available functions.

> options(digits=3)
> options(width=72) # narrow output
> p = c(.1,.2,.3)
> x = runif(10000)
> mycat1 = numeric(10000)
> for (i in 0:length(p)) {

mycat1 = mycat1 + (x >= sum(p[0:i]))
}

> table(mycat1)
mycat1

1 2 3 4
955 1988 3028 4029

> mycat2 = cut(runif(10000), c(0, 0.1, 0.3, 0.6, 1))
> summary(mycat2)
(0,0.1] (0.1,0.3] (0.3,0.6] (0.6,1]

1050 2033 3041 3876
> mycat3 = sample(1:4, 10000, rep=TRUE, prob=c(.1,.2,.3,.4))
> table(mycat3)
mycat3

1 2 3 4
1023 2015 3009 3953

155

i
i

“K23166” — 2015/1/9 — 17:35 — page 156 — #182 i
i

i
i

i
i

156 CHAPTER 10. SIMULATION

The cut() function (2.2.4) bins continuous data into categories with both endpoints defined
by the arguments. Note that the min() and max() functions can be particularly useful here
in the outer categories. The sample() function as shown treats the values 1, 2, 3, 4 as a
dataset, and samples from the dataset 10,000 times with the probability of selection defined
in the prob vector.

10.1.2 Generate data from a logistic regression

Here we show how to simulate data from a logistic regression (7.1.1). Our process is to
generate the linear predictor, then apply the inverse link, and finally draw from a distribu-
tion with this parameter. This approach is useful in that it can easily be applied to other
generalized linear models (7.1). Here we make the intercept �1, the slope 0.5, and generate
5, 000 observations.

> intercept = -1
> beta = 0.5
> n = 5000
> xtest = rnorm(n, mean=1, sd=1)
> linpred = intercept + (xtest * beta)
> prob = exp(linpred)/(1 + exp(linpred))
> ytest = ifelse(runif(n) < prob, 1, 0)

While the results of summary() for a glm object is relatively concise, we can display just
the estimated values of the coe�cients from the logistic regression model using the coef()
function (see 6.4.1).

> coef(glm(ytest ~ xtest, family=binomial))
(Intercept) xtest

-1.005 0.483

10.1.3 Generate data from a generalized linear mixed model

In this example, we generate data from a generalized linear mixed model (7.4.6) with a
dichotomous outcome. We generate 1500 clusters, denoted by id. There is one predictor
with a common value for all observations in a cluster (X1). Each observation within the
cluster has an order indicator (denoted by X2) that has a linear e↵ect (beta_2), and there
is an additional predictor that varies among observations (X3). The dichotomous outcome
Y is generated from these predictors using a logistic link incorporating a normal distributed
random intercept for each cluster.

The simulation approach is an extension of that shown in the previous section (see also
4.1.3).

> n = 1500; p = 3; sigbsq = 4
> beta = c(-2, 1.5, 0.5, -1)
> id = rep(1:n, each=p) # 1 1 ... 1 2 2 ... 2 ... n
> x1 = as.numeric(id < (n+1)/2) # 1 1 ... 1 0 0 ... 0
> randint = rep(rnorm(n, 0, sqrt(sigbsq)), each=p)
> x2 = rep(1:p, n) # 1 2 ... p 1 2 ... p ...
> x3 = runif(p*n)
> linpred = beta[1] + beta[2]*x1 + beta[3]*x2 + beta[4]*x3 + randint

i
i

“K23166” — 2015/1/9 — 17:35 — page 157 — #183 i
i

i
i

i
i

10.1. GENERATING DATA 157

> expit = exp(linpred)/(1 + exp(linpred))
> y = runif(p*n) < expit # generate a logical as our outcome

We fit the model using the glmer() function from the lme4 package.

> library(lme4)

Loading required package: Matrix

Loading required package: Rcpp

> glmmres = glmer(y ~ x1 + x2 + x3 + (1|id), family=binomial(link="logit"))
> summary(glmmres)
Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]
Family: binomial (logit)

Formula: y ~ x1 + x2 + x3 + (1 | id)

AIC BIC logLik deviance df.resid
5251 5283 -2621 5241 4495

Scaled residuals:
Min 1Q Median 3Q Max

-2.019 -0.494 -0.286 0.569 2.846

Random effects:
Groups Name Variance Std.Dev.
id (Intercept) 3.09 1.76

Number of obs: 4500, groups: id, 1500

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.9668 0.1633 -12.04 < 2e-16 ***
x1 1.5557 0.1319 11.80 < 2e-16 ***
x2 0.4631 0.0501 9.25 < 2e-16 ***
x3 -1.0337 0.1550 -6.67 2.5e-11 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Correlation of Fixed Effects:
(Intr) x1 x2

x1 -0.498
x2 -0.673 0.103
x3 -0.387 -0.073 -0.050

10.1.4 Generate correlated binary data

Another way to generate correlated dichotomous outcomes Y1 and Y2 is based on the proba-
bilities corresponding to the 2⇥2 table. Given these cell probabilities, the variable probabil-
ities can be expressed as a function of the marginal probabilities and the desired correlation,
using the methods of Lipsitz and colleagues [103]. Here we generate a sample of 1000 values
where: P (Y1 = 1) = .15, P (Y2 = 1) = .25, and Corr(Y1, Y2) = 0.40.

i
i

“K23166” — 2015/1/9 — 17:35 — page 158 — #184 i
i

i
i

i
i

158 CHAPTER 10. SIMULATION

> p1 = .15; p2 = .25; corr = 0.4; n = 10000
> p1p2 = corr*sqrt(p1*(1-p1)*p2*(1-p2)) + p1*p2
> library(Hmisc)
> vals = rMultinom(matrix(c(1-p1-p2+p1p2, p1-p1p2, p2-p1p2, p1p2),

nrow=1, ncol=4), n)
> y1 = rep(0, n); y2 = rep(0, n) # put zeroes everywhere
> y1[vals==2 | vals==4] = 1 # and replace them with ones
> y2[vals==3 | vals==4] = 1 # where needed
> rm(vals, p1, p2, p1p2, corr, n) # cleanup

The generated data is close to the desired values.

> cor(y1, y2)
[1] 0.429
> table(y1)
y1

0 1
8515 1485
> table(y2)
y2

0 1
7542 2458

10.1.5 Generate data from a Cox model

To simulate data from a Cox proportional hazards model (7.5.1), we need to model the
hazard functions for both time to event and time to censoring. In this example, we use a
constant baseline hazard, but this can be modified by specifying other scale parameters
for the Weibull random variables.

> # generate data from Cox model
> n = 10000
> beta1 = 2; beta2 = -1
> lambdaT = .002 # baseline hazard
> lambdaC = .004 # hazard of censoring
> x1 = rnorm(n) # standard normal
> x2 = rnorm(n)
> # true event time
> T = rweibull(n, shape=1, scale=lambdaT*exp(-beta1*x1-beta2*x2))
> C = rweibull(n, shape=1, scale=lambdaC) #censoring time
> time = pmin(T,C) #observed time is min of censored and true
> censored = (time==C) # set to 1 if event is censored
> # fit Cox model
> library(survival)
> survobj = coxph(Surv(time, (1-censored))~ x1 + x2, method="breslow")

These parameters generate data where approximately 40% of the observations are censored.
The coxph() function expects an observed event indicator. We tabulate the censoring
indicator, then display the results as well as the associated 95% confidence intervals.

