
i
i

“K23166” — 2015/1/9 — 17:35 — page 67 — #93 i
i

i
i

i
i

Chapter 6

Linear regression and ANOVA

Regression and analysis of variance (ANOVA) form the basis of many investigations. Here
we describe how to undertake many common tasks in linear regression (broadly defined),
while Chapter 7 discusses many generalizations, including other types of outcome variables,
longitudinal and clustered analysis, and survival methods.

Many R commands can perform linear regression, as it constitutes a special case of which
many models are generalizations. We present detailed descriptions for the lm() command,
as it o↵ers the most flexibility and best output options tailored to linear regression in
particular. While ANOVA can be viewed as a special case of linear regression, separate
routines are available (aov()) to perform it.

R supports a flexible modeling language implemented using formulas (see help(formula)
and 6.1.1) for regression that shares functionality with the lattice graphics functions (as well
as other packages). Many of the routines available within R return or operate on lm class ob-
jects, which include objects such as coe�cients, residuals, fitted values, weights, contrasts,
model matrices, and similar quantities (see help(lm)).

The CRAN statistics for the social sciences task view provides an excellent overview of
methods described here and in Chapter 7.

6.1 Model fitting

6.1.1 Linear regression
Example: 6.6.2

mod1 = lm(y ~ x1 + ... + xk, data=ds)
summary(mod1)
summary.aov(mod1)
or
form = as.formula(y ~ x1 + ... + xk)
mod1 = lm(form, data=ds)
summary(mod1)
coef(mod1)
Note: The first argument of the lm() function is a formula object, with the outcome
specified followed by the ⇠ operator then the predictors. It returns a linear model ob-
ject. More information about the linear model summary() command can be found using
help(summary.lm). The coef() function extracts coe�cients from a model (see also the
coefplot package). The biglm() function in the biglm package can support model fitting
to very large datasets (see 6.1.7). By default, stars are used to annotate the output of

67



i
i

“K23166” — 2015/1/9 — 17:35 — page 68 — #94 i
i

i
i

i
i

68 CHAPTER 6. LINEAR REGRESSION AND ANOVA

the summary() functions regarding significance levels: these can be turned o↵ using the
command options(show.signif.stars=FALSE).

6.1.2 Linear regression with categorical covariates
Example: 6.6.2

See 6.1.4 (parameterization of categorical covariates).

ds = transform(ds, x1f = as.factor(x1))
mod1 = lm(y ~ x1f + x2 + ... + xk, data=ds)

Note: The as.factor() command creates a categorical variable from a variable. By default,
the lowest value (either numerically or lexicographically) is the reference value. The levels
option for the factor() function can be used to select a particular reference value (see
2.2.19). Ordered factors can be constructed using the ordered() function.

6.1.3 Changing the reference category

library(dplyr)
ds = mutate(ds, neworder = factor(classvar,

levels=c("level", "otherlev1", "otherlev2")))
mod1 = lm(y ~ neworder, data=ds)

Note: The first level of a factor (by default, that which appears first lexicographically) is
the reference group. This can be modified through use of the factor() function.

6.1.4 Parameterization of categorical covariates
Example: 6.6.6

The as.factor() function can be applied within any model-fitting command. Parameter-
ization of the covariate can be controlled as below.

ds = transform(ds, x1f = as.factor(x1))
mod1 = lm(y ~ x1f, contrasts=list(x1f="contr.SAS"), data=ds)

Note: The as.factor() function creates a factor object. The contrasts option for
the lm() function specifies how the levels of that factor object should be used within the
function. The levels option to the factor() function allows specification of the ordering
of levels (the default is lexicographic). An example can be found in Section 6.6.

The specification of the design matrix for analysis of variance and regression models
can be controlled using the contrasts option. Examples of options (for a factor with four
equally spaced levels) are given below.

> contr.treatment(4) > contr.poly(4)
2 3 4 .L .Q .C

1 0 0 0 [1,] -0.671 0.5 -0.224
2 1 0 0 [2,] -0.224 -0.5 0.671
3 0 1 0 [3,] 0.224 -0.5 -0.671
4 0 0 1 [4,] 0.671 0.5 0.224
> contr.SAS(4) > contr.sum(4)
1 2 3 [,1] [,2] [,3]

1 1 0 0 1 1 0 0
2 0 1 0 2 0 1 0



i
i

“K23166” — 2015/1/9 — 17:35 — page 69 — #95 i
i

i
i

i
i

6.1. MODEL FITTING 69

3 0 0 1 3 0 0 1
4 0 0 0 4 -1 -1 -1
> contr.helmert(4)
[,1] [,2] [,3]

1 -1 -1 -1
2 1 -1 -1
3 0 2 -1
4 0 0 3

See options("contrasts") for defaults, and contrasts() or C() to apply a contrast func-
tion to a factor variable. Support for reordering factors is available within the factor()
function.

6.1.5 Linear regression with no intercept

mod1 = lm(y ~ 0 + x1 + ... + xk, data=ds)
or
mod1 = lm(y ~ x1 + ... + xk - 1, data=ds)

6.1.6 Linear regression with interactions
Example: 6.6.2

mod1 = lm(y ~ x1 + x2 + x1:x2 + x3 + ... + xk, data=ds)
or
lm(y ~ x1*x2 + x3 + ... + xk, data=ds)

Note: The * operator includes all lower-order terms (in this case main e↵ects), while the
: operator includes only the specified interaction. So, for example, the commands y
⇠ x1*x2*x3 and y ⇠ x1 + x2 + x3 + x1:x2 + x1:x3 + x2:x3 + x1:x2:x3 are equiv-
alent. The syntax also works with any covariates designated as categorical using the
as.factor() command (see 6.1.2).

6.1.7 Linear regression with big data

library(biglm)
myformula = as.formula(y ~ x1)
res = biglm(myformula, chunk1)
res = update(res, chunk2)
coef(res)

Note: The biglm() and update() functions in the biglm package can fit linear (or gener-
alized linear) models with dataframes larger than memory. It allows a single large model
to be estimated in more manageable chunks, with results updated iteratively as each chunk
is processed. The chunk size will depend on the application. The data argument may be a
function, dataframe, SQLiteConnection, or RODBC connection object.



i
i

“K23166” — 2015/1/9 — 17:35 — page 70 — #96 i
i

i
i

i
i

70 CHAPTER 6. LINEAR REGRESSION AND ANOVA

6.1.8 One-way analysis of variance
Example: 6.6.6

ds = transform(ds, xf=as.factor(x))
mod1 = aov(y ~ xf, data=ds)
summary(mod1)
anova(mod1)

Note: The summary() command can be used to provide details of the model fit. More
information can be found using help(summary.aov). Note that summary.lm(mod1) will
display the regression parameters underlying the ANOVA model.

6.1.9 Analysis of variance with two or more factors
Example: 6.6.6

Interactions can be specified using the syntax introduced in 6.1.6 (see interaction plots,
8.5.2).

aov(y ~ as.factor(x1) + as.factor(x2), data=ds)

6.2 Tests, contrasts, and linear functions of parameters

6.2.1 Joint null hypotheses: several parameters equal 0

As an example, consider testing the null hypothesis H0 : �1 = �2 = 0.

mod1 = lm(y ~ x1 + ... + xk, data=ds)
mod2 = lm(y ~ x3 + ... + xk, data=ds)
anova(mod2, mod1)

6.2.2 Joint null hypotheses: sum of parameters

As an example, consider testing the null hypothesis H0 : �1 + �2 = 1.

mod1 = lm(y ~ x1 + ... + xk, data=ds)
covb = vcov(mod1)
coeff.mod1 = coef(mod1)
t = (coeff.mod1[2] + coeff.mod1[3] - 1)/

sqrt(covb[2,2] + covb[3,3] + 2*covb[2,3])
pvalue = 2*(1-pt(abs(t), df=mod1$df))

6.2.3 Tests of equality of parameters
Example: 6.6.8

As an example, consider testing the null hypothesis H0 : �1 = �2.

mod1 = lm(y ~ x1 + ... + xk, data=ds)
mod2 = lm(y ~ I(x1+x2) + ... + xk, data=ds)
anova(mod2, mod1)

or
library(gmodels)
estimable(mod1, c(0, 1, -1, 0, ..., 0))
or



i
i

“K23166” — 2015/1/9 — 17:35 — page 71 — #97 i
i

i
i

i
i

6.3. MODEL RESULTS AND DIAGNOSTICS 71

mod1 = lm(y ~ x1 + ... + xk, data=ds)
covb = vcov(mod1)
coeff.mod1 = coef(mod1)
t = (coeff.mod1[2]-coeff.mod1[3])/sqrt(covb[2,2]+covb[3,3]-2*covb[2,3])
pvalue = 2*(1-pt(abs(t), mod1$df))

Note: The I() function inhibits the interpretation of operators, to allow them to be used
as arithmetic operators. The estimable() function calculates a linear combination of the
parameters. The more general code below utilizes the same approach introduced in 6.2.1
for the specific test of �1 = �2 (di↵erent coding would be needed for other comparisons).

6.2.4 Multiple comparisons
Example: 6.6.7

mod1 = aov(y ~ x, data=ds)
TukeyHSD(mod1, "x")

Note: The TukeyHSD() function takes an aov object as an argument and evaluates pairwise
comparisons between all of the combinations of the factor levels of the variable x. (See
the p.adjust() function, as well as the multcomp and factorplot packages for other
multiple comparison methods, including Bonferroni, Holm, Hochberg, and false discovery
rate adjustments.)

6.2.5 Linear combinations of parameters
Example: 6.6.8

It is often useful to find predicted values for particular covariate values. Here, we calculate
the predicted value E[Y |X1 = 1, X2 = 3] = �̂0 + �̂1 + 3�̂2.

mod1 = lm(y ~ x1 + x2, data=ds)
newdf = data.frame(x1=c(1), x2=c(3))
predict(mod1, newdf, se.fit=TRUE, interval="confidence")
or
library(gmodels)
estimable(mod1, c(1, 1, 3))

or
library(mosaic)
myfun = makeFun(mod1)
myfun(x1=1, x2=3)

Note: The predict() command in R can generate estimates at any combination of param-
eter values, as specified as a dataframe that is passed as an argument. More information
on this function can be found using help(predict.lm).

6.3 Model results and diagnostics

There are many functions available to produce predicted values and diagnostics. For ad-
ditional commands not listed here, see help(influence.measures) and the “See also” in
help(lm).



i
i

“K23166” — 2015/1/9 — 17:35 — page 72 — #98 i
i

i
i

i
i

72 CHAPTER 6. LINEAR REGRESSION AND ANOVA

6.3.1 Predicted values
Example: 6.6.2

mod1 = lm(y ~ x, data=ds)
predicted.varname = predict(mod1)

Note: The command predict() operates on any lm object and by default generates a vector
of predicted values.

6.3.2 Residuals
Example: 6.6.2

mod1 = lm(y ~ x, data=ds)
residual.varname = residuals(mod1)

Note: The command residuals() operates on any lm object and generates a vector of
residuals. Other functions exist for aov, glm, or lme objects (see help(residuals.glm)).

6.3.3 Standardized and Studentized residuals
Example: 6.6.2

Standardized residuals are calculated by dividing the ordinary residual (observed minus
expected, yi � ŷi) by an estimate of its standard deviation. Studentized residuals are
calculated in a similar manner, where the predicted value and the variance of the residual
are estimated from the model fit while excluding that observation.

mod1 = lm(y ~ x, data=ds)
standardized.resid.varname = rstandard(mod1)
studentized.resid.varname = rstudent(mod1)

Note: The rstandard() and rstudent() functions operate on any lm object, and generate
a vector of studentized residuals (the former command includes the observation in the
calculation, while the latter does not).

6.3.4 Leverage
Example: 6.6.2

Leverage is defined as the diagonal element of the (X(XTX)�1XT ) or “hat” matrix.

mod1 = lm(y ~ x, data=ds)
leverage.varname = hatvalues(mod1)

Note: The command hatvalues() operates on any lm object and generates a vector of
leverage values.

6.3.5 Cook’s distance
Example: 6.6.2

Cook’s distance (D) is a function of the leverage (see 6.3.4) and the magnitude of the
residual. It is used as a measure of the influence of a data point in a regression model.

mod1 = lm(y ~ x, data=ds)
cookd.varname = cooks.distance(mod1)

Note: The command cooks.distance() operates on any lm object and generates a vector
of Cook’s distance values.



i
i

“K23166” — 2015/1/9 — 17:35 — page 73 — #99 i
i

i
i

i
i

6.4. MODEL PARAMETERS AND RESULTS 73

6.3.6 DFFITs
Example: 6.6.2

DFFITs are a standardized function of the di↵erence between the predicted value for the
observation when it is included in the dataset and when (only) it is excluded from the
dataset. They are used as an indicator of the observation’s influence.

mod1 = lm(y ~ x, data=ds)
dffits.varname = dffits(mod1)

Note: The command dffits() operates on any lm object and generates a vector of DFFITS
values.

6.3.7 Diagnostic plots
Example: 6.6.4

mod1 = lm(y ~ x, data=ds)
par(mfrow=c(2, 2)) # display 2 x 2 matrix of graphs
plot(mod1)

Note: The plot.lm() function (which is invoked when plot() is given a linear regression
model as an argument) can generate six plots: (1) a plot of residuals against fitted values,
(2) a Scale-Location plot of

p
(Yi � Ŷi) against fitted values, (3) a normal Q-Q plot of the

residuals, (4) a plot of Cook’s distances (6.3.5) versus row labels, (5) a plot of residuals
against leverages (6.3.4), and (6) a plot of Cook’s distances against leverage/(1�leverage).
The default is to plot the first three and the fifth. The which option can be used to specify
a di↵erent set (see help(plot.lm)).

6.3.8 Heteroscedasticity tests

library(lmtest)
bptest(y ~ x1 + ... + xk, data=ds)

Note: The bptest() function in the lmtest package performs the Breusch–Pagan test for
heteroscedasticity [18]. Other diagnostic tests are available within the package.

6.4 Model parameters and results

6.4.1 Parameter estimates
Example: 6.6.2

mod1 = lm(y ~ x, data=ds)
coeff.mod1 = coef(mod1)

Note: The first element of the vector coeff.mod1 is the intercept (assuming that a model
with an intercept was fit).

6.4.2 Standardized regression coe�cients

Standardized coe�cients from a linear regression model are the parameter estimates ob-
tained when the predictors and outcomes have been standardized to have a variance of 1
prior to model fitting.



i
i

“K23166” — 2015/1/9 — 17:35 — page 74 — #100 i
i

i
i

i
i

74 CHAPTER 6. LINEAR REGRESSION AND ANOVA

library(QuantPsyc)
mod1 = lm(y ~ x)
lm.beta(mod1)

6.4.3 Coe�cient plot
Example: 6.6.3

An alternative way to display regression results (coe�cients and associated confidence in-
tervals) is with a figure rather than a table [51].

library(mosaic)
mplot(mod, which=7)

Note: The specific coe�cients to be displayed can be specified (or excluded, using negative
values) via the rows option.

6.4.4 Standard errors of parameter estimates

See 6.4.10 (covariance matrix).

mod1 = lm(y ~ x, data=ds)
sqrt(diag(vcov(mod1)))
or
coef(summary(mod1))[,2]

Note: The standard errors are the second column of the results from coef().

6.4.5 Confidence interval for parameter estimates
Example: 6.6.2

mod1 = lm(y ~ x, data=ds)
confint(mod1)

6.4.6 Confidence limits for the mean

These are the lower (and upper) confidence limits for the mean of observations with the
given covariate values, as opposed to the prediction limits for individual observations with
those values (see prediction limits, 6.4.7).

mod1 = lm(y ~ x, data=ds)
pred = predict(mod1, interval="confidence")
lcl.varname = pred[,2]

Note: The lower confidence limits are the second column of the results from predict().
To generate the upper confidence limits, the user would access the third column of the
predict() object. The command predict() operates on any lm() object, and with these
options generates confidence limit values. By default, the function uses the estimation
dataset, but a separate dataset of values to be used to predict can be specified. The
panel=panel.lmbands option from the mosaic package can be added to an xyplot() call
to augment the scatterplot with confidence interval and prediction bands.



i
i

“K23166” — 2015/1/9 — 17:35 — page 75 — #101 i
i

i
i

i
i

6.4. MODEL PARAMETERS AND RESULTS 75

6.4.7 Prediction limits

These are the lower (and upper) prediction limits for “new” observations with the covariate
values of subjects observed in the dataset, as opposed to confidence limits for the population
mean (see confidence limits, 6.4.6).

mod1 = lm(y ~ ..., data=ds)
pred.w.lowlim = predict(mod1, interval="prediction")[,2]

Note: This code saves the second column of the results from the predict() function into
a vector. To generate the upper confidence limits, the user would access the third column
of the predict() object in R. The command predict() operates on any lm() object,
and with these options generates prediction limit values. By default, the function uses the
estimation dataset, but a separate dataset of values to be used to predict can be specified.

6.4.8 R-squared

mod1 = lm(y ~ ..., data=ds)
summary(mod1)$r.squared
or
library(mosaic)
rsquared(mod1)

6.4.9 Design and information matrix

See 3.3 (matrices).

mod1 = lm(y ~ x1 + ... + xk, data=ds)
XpX = t(model.matrix(mod1)) %*% model.matrix(mod1)
or
X = cbind(rep(1, length(x1)), x1, x2, ..., xk)
XpX = t(X) %*% X
rm(X)

Note: The model.matrix() function creates the design matrix from a linear model object.
Alternatively, this quantity can be built up using the cbind() function to glue together the
design matrix X. Finally, matrix multiplication (3.3.6) and the transpose function are used
to create the information (X 0X) matrix.

6.4.10 Covariance matrix of parameter estimates

Example: 6.6.2
See 3.3 (matrices) and 6.4.4 (standard errors).

mod1 = lm(y ~ x, data=ds)
vcov(mod1)
or
sumvals = summary(mod1)
covb = sumvals$cov.unscaled*sumvals$sigma^2

Note: Running help(summary.lm) provides details on return values.



i
i

“K23166” — 2015/1/9 — 17:35 — page 76 — #102 i
i

i
i

i
i

76 CHAPTER 6. LINEAR REGRESSION AND ANOVA

6.4.11 Correlation matrix of parameter estimates

See 3.3 (matrices) and 6.4.4 (standard errors).

mod1 = lm(y ~ x, data=ds)
mod1.cov = vcov(mod1)
mod1.cor = cov2cor(mod1.cov)

Note: The cov2cor() function is a convenient way to convert a covariance matrix into a
correlation matrix.

6.5 Further resources

An accessible guide to linear regression in R can be found in [36]. Cook [28] reviews
regression diagnostics. Frank Harrell’s rms (regression modeling strategies) package [61]
features extensive support for regression modeling. The CRAN statistics for the social
sciences task view provides an excellent overview of methods described here and in Chapter
7.

6.6 Examples

To help illustrate the tools presented in this chapter, we apply many of the entries to the
HELP data. The code can be downloaded from http://www.amherst.edu/~nhorton/r2/
examples.

We begin by reading in the dataset and keeping only the female subjects. To prepare
for future analyses, we create a version of substance as a factor variable (see 6.1.4) as well
as dataframes containing subsets of our data.

> options(digits=3)
> # read in Stata format
> library(foreign)
> ds = read.dta("http://www.amherst.edu/~nhorton/r2/datasets/help.dta",

convert.underscore=FALSE)
> library(dplyr)
> ds = mutate(ds, sub=factor(substance,

levels=c("heroin", "alcohol", "cocaine")))
> newds = filter(ds, female==1)
> alcohol = filter(newds, substance=="alcohol")
> cocaine = filter(newds, substance=="cocaine")
> heroin = filter(newds, substance=="heroin")

6.6.1 Scatterplot with smooth fit

As a first step to help guide estimation of a linear regression, we create a scatterplot (8.3.1)
displaying the relationship between age and the number of alcoholic drinks consumed in
the period before entering detox (variable name: i1), as well as primary substance of abuse
(alcohol, cocaine, or heroin).

Figure 6.1 displays a scatterplot of observed values for i1 (along with separate smooth
fits by primary substance). To improve legibility, the plotting region is restricted to those
with number of drinks between 0 and 40 (see plotting limits, 9.2.9).



i
i

“K23166” — 2015/1/9 — 17:35 — page 77 — #103 i
i

i
i

i
i

6.6. EXAMPLES 77

> with(newds, plot(age, i1, ylim=c(0,40), type="n", cex.lab=1.2,
cex.axis=1.2))

> with(alcohol, points(age, i1, pch="a"))
> with(alcohol, lines(lowess(age, i1), lty=1, lwd=2))
> with(cocaine, points(age, i1, pch="c"))
> with(cocaine, lines(lowess(age, i1), lty=2, lwd=2))
> with(heroin, points(age, i1, pch="h"))
> with(heroin, lines(lowess(age, i1), lty=3, lwd=2))
> legend(44, 38, legend=c("alcohol", "cocaine", "heroin"), lty=1:3,

cex=1.4, lwd=2, pch=c("a", "c", "h"))

20 30 40 50

0
10

20
30

40

age

i1

a

a

a

a

a

aa a

a

a

aa

aa

a a

a

a

a
a a

a a

a

a

a

c

c

cc

cc

cc

c

c

c

c

c
c cc

c

c
c

c

c

c

c

c c
c

c
c
c

c

c
c

c

c
c

c

cc

c

c h
hh

h

h hhh

h

h

h

h h

h

h

h

h

hh hhh

h

hh h
h

h

h

h

a
c
h

alcohol
cocaine
heroin

Figure 6.1: Scatterplot of observed values for age and I1 (plus smoothers by substance)
using base graphics

The pch option to the legend() command can be used to insert plot symbols in R
legends (Figure 6.1 displays the di↵erent line styles). A similar plot can be generated using
the lattice package (see Figure 6.2). Finally, a third figure can be generated using the
ggplot2 package (see Figure 6.3). Not surprisingly, the plots suggest a dramatic e↵ect of
primary substance, with alcohol users drinking more than others. There is some indication
of an interaction with age.

6.6.2 Linear regression with interaction

Next we fit a linear regression model (6.1.1) for the number of drinks as a function of age,
substance, and their interaction (6.1.6). We also fit the model with no interaction and use
the anova() function to compare the models (the drop1() function could also be used).

> options(show.signif.stars=FALSE)
> lm1 = lm(i1 ~ sub * age, data=newds)
> lm2 = lm(i1 ~ sub + age, data=newds)



i
i

“K23166” — 2015/1/9 — 17:35 — page 78 — #104 i
i

i
i

i
i

78 CHAPTER 6. LINEAR REGRESSION AND ANOVA

> xyplot(i1 ~ age, groups=substance, type=c("p", "smooth"),
auto.key=list(columns=3, lines=TRUE, points=FALSE),
ylim=c(0, 40), data=newds)

age

i1

10

20

30

20 30 40 50

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

alcohol cocaine heroin

Figure 6.2: Scatterplot of observed values for age and I1 (plus smoothers by substance)
using the lattice package

> anova(lm2, lm1)
Analysis of Variance Table

Model 1: i1 ~ sub + age
Model 2: i1 ~ sub * age
Res.Df RSS Df Sum of Sq F Pr(>F)

1 103 26196
2 101 24815 2 1381 2.81 0.065

> summary.aov(lm1)
Df Sum Sq Mean Sq F value Pr(>F)

sub 2 10810 5405 22.00 1.2e-08
age 1 84 84 0.34 0.559
sub:age 2 1381 690 2.81 0.065
Residuals 101 24815 246

We observe a borderline significant interaction between age and substance group (p =
0.065). Additional information about the model can be displayed using the summary() and
confint() functions.



i
i

“K23166” — 2015/1/9 — 17:35 — page 79 — #105 i
i

i
i

i
i

6.6. EXAMPLES 79

> library(ggplot2)
> ggplot(data=newds, aes(x=age, y=i1)) + geom_point(aes(shape=substance)) +

stat_smooth(method=loess, level=0.50, colour="black") +
aes(linetype=substance) +
coord_cartesian(ylim = c(0, 40)) +
theme(legend.position="top") + labs(title="")

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●●
●

●

●

●

●

●●

●●
●●

●

●

●●

●●●●

●●

●

0

10

20

30

40

20 30 40 50
age

i1

substance ●● alcohol cocaine heroin

Figure 6.3: Scatterplot of observed values for age and I1 (plus smoothers by substance)
using the ggplot2 package

> summary(lm1)

Call:
lm(formula = i1 ~ sub * age, data = newds)

Residuals:
Min 1Q Median 3Q Max

-31.92 -8.25 -4.18 3.58 49.88

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -7.770 12.879 -0.60 0.54763
subalcohol 64.880 18.487 3.51 0.00067
subcocaine 13.027 19.139 0.68 0.49763
age 0.393 0.362 1.09 0.28005
subalcohol:age -1.113 0.491 -2.27 0.02561
subcocaine:age -0.278 0.540 -0.51 0.60813



i
i

“K23166” — 2015/1/9 — 17:35 — page 80 — #106 i
i

i
i

i
i

80 CHAPTER 6. LINEAR REGRESSION AND ANOVA

Residual standard error: 15.7 on 101 degrees of freedom
Multiple R-squared: 0.331,Adjusted R-squared: 0.298
F-statistic: 9.99 on 5 and 101 DF, p-value: 8.67e-08

> confint(lm1)
2.5 % 97.5 %

(Intercept) -33.319 17.778
subalcohol 28.207 101.554
subcocaine -24.938 50.993
age -0.325 1.112
subalcohol:age -2.088 -0.138
subcocaine:age -1.348 0.793

It may also be useful to produce the table in LATEX format. We can use the xtable package
to display the regression results in LATEX as shown in Table 6.1.

> library(xtable)
> lmtab = xtable(lm1, digits=c(0,3,3,2,4), label="better",
> caption="Formatted results using the {\\tt xtable} package")
> print(lmtab) # output the LaTeX

Table 6.1: Formatted results using the xtable package
Estimate Std. Error t value Pr(>|t|)

(Intercept) -7.770 12.879 -0.60 0.5476
subalcohol 64.880 18.487 3.51 0.0007
subcocaine 13.027 19.139 0.68 0.4976

age 0.393 0.362 1.09 0.2801
subalcohol:age -1.113 0.491 -2.27 0.0256
subcocaine:age -0.278 0.540 -0.51 0.6081

There are many quantities of interest stored in the linear model object lm1, and these can
be viewed or extracted for further use.

> names(summary(lm1))
[1] "call" "terms" "residuals" "coefficients"
[5] "aliased" "sigma" "df" "r.squared"
[9] "adj.r.squared" "fstatistic" "cov.unscaled"

> summary(lm1)$sigma
[1] 15.7

> names(lm1)
[1] "coefficients" "residuals" "effects" "rank"
[5] "fitted.values" "assign" "qr" "df.residual"
[9] "contrasts" "xlevels" "call" "terms"

[13] "model"



i
i

“K23166” — 2015/1/9 — 17:35 — page 81 — #107 i
i

i
i

i
i

6.6. EXAMPLES 81

> coef(lm1)
(Intercept) subalcohol subcocaine age subalcohol:age

-7.770 64.880 13.027 0.393 -1.113
subcocaine:age

-0.278

> vcov(lm1)
(Intercept) subalcohol subcocaine age subalcohol:age

(Intercept) 165.86 -165.86 -165.86 -4.548 4.548
subalcohol -165.86 341.78 165.86 4.548 -8.866
subcocaine -165.86 165.86 366.28 4.548 -4.548
age -4.55 4.55 4.55 0.131 -0.131
subalcohol:age 4.55 -8.87 -4.55 -0.131 0.241
subcocaine:age 4.55 -4.55 -10.13 -0.131 0.131

subcocaine:age
(Intercept) 4.548
subalcohol -4.548
subcocaine -10.127
age -0.131
subalcohol:age 0.131
subcocaine:age 0.291

The entire table of regression coe�cients and associated statistics can be saved as an object.

> mymodel = coef(summary(lm1))
> mymodel

Estimate Std. Error t value Pr(>|t|)
(Intercept) -7.770 12.879 -0.603 0.547629
subalcohol 64.880 18.487 3.509 0.000672
subcocaine 13.027 19.139 0.681 0.497627
age 0.393 0.362 1.086 0.280052
subalcohol:age -1.113 0.491 -2.266 0.025611
subcocaine:age -0.278 0.540 -0.514 0.608128
> mymodel[2,3] # alcohol t-value
[1] 3.51

6.6.3 Regression coe�cient plot

The mplot() function in the mosaic package generates a coe�cient plot (6.4.3) for the main
e↵ects multiple regression model (see Figure 6.4).

6.6.4 Regression diagnostics

Assessing the model is an important part of any analysis. We begin by examining the
residuals (6.3.2). First, we calculate the quantiles of their distribution (5.1.5), then display
the smallest residual.



i
i

“K23166” — 2015/1/9 — 17:35 — page 82 — #108 i
i

i
i

i
i

82 CHAPTER 6. LINEAR REGRESSION AND ANOVA

> library(mosaic)
> mplot(lm2, which=7, rows=-1)
[[1]]

95% confidence intervals

estimate

co
ef
fic
ie
nt

age

subcocaine

subalcohol

0 10 20 30

Figure 6.4: Regression coe�cient plot

> library(dplyr)
> newds = mutate(newds, pred = fitted(lm1), resid = residuals(lm1))
> with(newds, quantile(resid))

0% 25% 50% 75% 100%
-31.92 -8.25 -4.18 3.58 49.88

One way to print the largest value is to select the observation that matches the largest
value. We use a series of “pipe” operations (A.5.3) to select a set of variables with the
select() function, create the standardized residuals and add them to the dataset with the
rstandard() function nested in the mutate() function, and then filter() out all rows
except the one containing the maximum residual.

> library(dplyr)
> newds %>%

select(id, age, i1, sub, pred, resid) %>%
mutate(rstand = rstandard(lm1)) %>%
filter(resid==max(resid))

id age i1 sub pred resid rstand
1 9 50 71 alcohol 21.1 49.9 3.32

Graphical tools are one of the best ways to examine residuals. Figure 6.5 displays the
default diagnostic plots (6.3) from the model.

Figure 6.6 displays the empirical density of the standardized residuals, along with an



i
i

“K23166” — 2015/1/9 — 17:35 — page 83 — #109 i
i

i
i

i
i

6.6. EXAMPLES 83

> oldpar = par(mfrow=c(2, 2), mar=c(4, 4, 2, 2) + .1)
> plot(lm1); par(oldpar)

0 10 20 30 40

−4
0

0
40

Fitted values

R
es

id
ua

ls

● ●
●

●

● ●●
●

●●
●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●●
●

●●●●

●

●●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●
●●●

●

●

●

●

●
●●

●

●●

●● ●
●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●
●

●
● ●● ●
●

● ●●
● ●

●

●

● ●

●

●

●

●

Residuals vs Fitted
484

77

●
●

●

●

● ●●
●

● ●
●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●●
●

●●●●

●

●●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●
●● ●

●

●

●

●

●
●●

●

●●

● ●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●
● ● ●●

●
●●●

●●
●

●

●●

●

●

●

●

−2 −1 0 1 2

−2
0

2

Theoretical Quantiles

St
an

da
rd

iz
ed

 re
si

du
al

s Normal Q−Q
484

77

0 10 20 30 40

0.
0

1.
0

Fitted values

St
an

da
rd

iz
ed

re
si

du
al

s

●

●

●

●

●
●●

● ●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●
●●

●

●●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

● ●

●
●

●

●
●●

●

●

●

●

●
●

●

●

●

●

Scale−Location
484

77

0.00 0.05 0.10 0.15 0.20 0.25

−2
0

2
4

Leverage

St
an

da
rd

iz
ed

 re
si

du
al

s

●
●

●

●

● ●●
●

●●
●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●●
●

●●●●

●

●●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●
●●●

●

●

●

●

●
●●

●

●●

●●●
●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●
●●●

●
●

●● ●
●●

●

●

● ●

●

●

●

●

Cook's distance

0.5

Residuals vs Leverage
4

57

60

Figure 6.5: Default diagnostics for linear models

overlaid normal density. The assumption that the residuals are approximately Gaussian
does not appear to be tenable.

The residual plots also indicate some potentially important departures from model as-
sumptions: further exploration and model assessment should be undertaken.

6.6.5 Fitting a regression model separately for each value
of another variable

One common task is to perform identical analyses in several groups. Here, as an example,
we consider separate linear regressions for each substance abuse group.

A matrix of the correct size is created, then a for loop is run for each unique value of
the grouping variable.

> uniquevals = unique(newds$substance)
> numunique = length(uniquevals)
> formula = as.formula(i1 ~ age)
> p = length(coef(lm(formula, data=newds)))
> res = matrix(rep(0, numunique*p), p, numunique)
> for (i in 1:length(uniquevals)) {

res[,i] = coef(lm(formula,
data=subset(newds, substance==uniquevals[i])))

}
> rownames(res) = c("intercept","slope")
> colnames(res) = uniquevals



i
i

“K23166” — 2015/1/9 — 17:35 — page 84 — #110 i
i

i
i

i
i

84 CHAPTER 6. LINEAR REGRESSION AND ANOVA

> library(MASS)
> std.res = rstandard(lm1)
> hist(std.res, breaks=seq(-2.5, 3.5, by=.5), main="",

xlab="standardized residuals", col="gray80", freq=FALSE)
> lines(density(std.res), lwd=2)
> xvals = seq(from=min(std.res), to=max(std.res), length=100)
> lines(xvals, dnorm(xvals, mean(std.res), sd(std.res)), lty=2)

standardized residuals

D
en

si
ty

−2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

Figure 6.6: Empirical density of residuals, with superimposed normal density

> res
heroin cocaine alcohol

intercept -7.770 5.257 57.11
slope 0.393 0.116 -0.72

6.6.6 Two-way ANOVA

Is there a statistically significant association between gender and substance abuse group with
depressive symptoms? An interaction plot (8.5.2) may be helpful in making a determination.
The interaction.plot() function can be used to carry out this task. Figure 6.7 displays
an interaction plot for CESD as a function of substance group and gender.

> library(dplyr)
> ds = mutate(ds, genf = as.factor(ifelse(female, "F", "M")))

There are indications of large e↵ects of gender and substance group, but little suggestion of
interaction between the two. The same conclusion is reached in Figure 6.8, which displays
boxplots by substance group and gender. We begin by creating better labels for the grouping
variable, using the cases() function from the memisc package.



i
i

“K23166” — 2015/1/9 — 17:35 — page 85 — #111 i
i

i
i

i
i

6.6. EXAMPLES 85

> with(ds, interaction.plot(substance, genf, cesd,
xlab="substance", las=1, lwd=2))

28

30

32

34

36

38

40

substance

m
ea

n 
of

  c
es

d

alcohol cocaine heroin

   genf

F
M

Figure 6.7: Interaction plot of CESD as a function of substance group and gender

> library(dplyr)
> library(memisc)
> ds = mutate(ds, subs = cases(

"Alc" = substance=="alcohol",
"Coc" = substance=="cocaine",
"Her" = substance=="heroin"))

The width of each box is proportional to the size of the sample, with the notches denoting
confidence intervals for the medians and X’s marking the observed means. Next, we proceed
to formally test whether there is a significant interaction through a two-way analysis of
variance (6.1.9). We fit models with and without an interaction, and then compare the
results. We also construct the likelihood ratio test manually.

> aov1 = aov(cesd ~ sub * genf, data=ds)
> aov2 = aov(cesd ~ sub + genf, data=ds)
> anova(aov2, aov1)
Analysis of Variance Table

Model 1: cesd ~ sub + genf
Model 2: cesd ~ sub * genf
Res.Df RSS Df Sum of Sq F Pr(>F)

1 449 65515
2 447 65369 2 146 0.5 0.61



i
i

“K23166” — 2015/1/9 — 17:35 — page 86 — #112 i
i

i
i

i
i

86 CHAPTER 6. LINEAR REGRESSION AND ANOVA

> boxout = with(ds,
boxplot(cesd ~ subs + genf, notch=TRUE, varwidth=TRUE,

col="gray80"))
> boxmeans = with(ds, tapply(cesd, list(subs, genf), mean))
> points(seq(boxout$n), boxmeans, pch=4, cex=2)

●

Alc.F Coc.F Her.F Alc.M Coc.M Her.M

0
10

20
30

40
50

60

Figure 6.8: Boxplot of CESD as a function of substance group and gender

> options(digits=8)
> logLik(aov1)
’log Lik.’ -1768.9186 (df=7)
> logLik(aov2)
’log Lik.’ -1769.4236 (df=5)
> lldiff = logLik(aov1)[1] - logLik(aov2)[1]
> lldiff
[1] 0.50505522
> 1 - pchisq(2*lldiff, df=2)
[1] 0.60347225
> options(digits=3)

There is little evidence (p > 0.6) of an interaction, so this term can be dropped.

> summary(aov2)
Df Sum Sq Mean Sq F value Pr(>F)

sub 2 2704 1352 9.27 0.00011
genf 1 2569 2569 17.61 3.3e-05
Residuals 449 65515 146

The AIC (Akaike Information Criterion) statistic (7.8.3) can also be used to compare models.

> AIC(aov1)
[1] 3552
> AIC(aov2)
[1] 3549



i
i

“K23166” — 2015/1/9 — 17:35 — page 87 — #113 i
i

i
i

i
i

6.6. EXAMPLES 87

The AIC criterion also suggests that the model without the interaction is most appropriate.
It may be useful to change the default reference level for variables. The default R design

matrix (see 6.1.4) can be changed and the model re-fit.

> contrasts(ds$sub) = contr.SAS(3)
> aov3 = lm(cesd ~ sub + genf, data=ds)
> summary(aov3)

Call:
lm(formula = cesd ~ sub + genf, data = ds)

Residuals:
Min 1Q Median 3Q Max

-32.13 -8.85 1.09 8.48 27.09

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 33.52 1.38 24.22 < 2e-16
sub1 5.61 1.46 3.83 0.00014
sub2 5.32 1.34 3.98 8.1e-05
genfM -5.62 1.34 -4.20 3.3e-05

Residual standard error: 12.1 on 449 degrees of freedom
Multiple R-squared: 0.0745,Adjusted R-squared: 0.0683
F-statistic: 12 on 3 and 449 DF, p-value: 1.35e-07

6.6.7 Multiple comparisons

We can also carry out multiple comparison (6.2.4) procedures to test each of the pairwise
di↵erences between substance abuse groups, using the TukeyHSD() function.

> mult = TukeyHSD(aov(cesd ~ sub, data=ds), "sub")
> mult
Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = cesd ~ sub, data = ds)

$sub
diff lwr upr p adj

alcohol-heroin -0.498 -3.89 2.89 0.936
cocaine-heroin -5.450 -8.95 -1.95 0.001
cocaine-alcohol -4.952 -8.15 -1.75 0.001

The alcohol group and heroin group both have significantly higher CESD scores than the
cocaine group, but the alcohol and heroin groups do not significantly di↵er from each other
(95% confidence interval (CI) for the di↵erence ranges from �3.9 to 2.9). Figure 6.9 provides
a graphical display of the pairwise comparisons.

The factorplot() function in the factorplot package provides an alternative plotting
scheme. This is demonstrated using a model where the CESD scores are grouped into six
categories.



i
i

“K23166” — 2015/1/9 — 17:35 — page 88 — #114 i
i

i
i

i
i

88 CHAPTER 6. LINEAR REGRESSION AND ANOVA

> require(mosaic)
> mplot(mult)

Tukey's Honest Significant Differences

difference in means

alcohol−heroin

cocaine−alcohol

cocaine−heroin

−8 −6 −4 −2 0 2

●

●

●

sub

Figure 6.9: Pairwise comparisons (using Tukey HSD procedure)

> library(dplyr)
> library(factorplot)
> newds = mutate(newds, cesdgrp = cut(cesd,

breaks=c(-1, 10, 20, 30, 40, 50, 61),
labels=c("0-10", "11-20", "21-30", "31-40", "41-50", "51-60")))

> tally(~ cesdgrp, data=newds)

0-10 11-20 21-30 31-40 41-50 51-60
4 10 18 31 24 20

> mod = lm(pcs ~ age + cesdgrp, data=newds)
> fp = factorplot(mod, adjust.method="none", factor.variable="cesdgrp",

pval=0.05, two.sided=TRUE, order="natural")

Figure 6.10 provides a graphical display of the fifteen pairwise comparisons, where the
pairwise di↵erence is displayed above the standard error of that di↵erence (in italics).

6.6.8 Contrasts

We can also fit contrasts (6.2.3) to test hypotheses involving multiple parameters. In this
case, we can compare the CESD scores for the alcohol and heroin groups to the cocaine
group.



i
i

“K23166” — 2015/1/9 — 17:35 — page 89 — #115 i
i

i
i

i
i

6.6. EXAMPLES 89

> plot(fp, abbrev.char=100)

11
−2

0

21
−3

0

31
−4

0

41
−5

0

51
−6

0

41−50

31−40

21−30

11−20

0−10 1.74
5.53

6.39
5.17

9.68
4.97

8.00
5.05

14.79
5.12

4.65
3.69

7.95
3.40

6.26
3.52

13.05
3.62

3.30
2.78

1.61
2.91

8.40
3.04

−1.69
2.54

5.11
2.68

6.80
2.83

Significantly < 0
Not Significant
Significantly > 0

bold =  brow − bcol
ital =  SE(brow − bcol)

Figure 6.10: Pairwise comparisons (using the factorplot function)

> library(gmodels)
> levels(ds$sub)
[1] "heroin" "alcohol" "cocaine"
> fit.contrast(aov2, "sub", c(1,1,-2), conf.int=0.95 )

Estimate Std. Error t value Pr(>|t|) lower CI upper CI
sub c=( 1 1 -2 ) 10.9 2.42 4.52 8.04e-06 6.17 15.7

As expected from the interaction plot (Figure 6.7), there is a statistically significant di↵er-
ence in this 1-degree-of-freedom comparison (p < 0.0001).


