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Abstract

Quantum logic spectroscopy enables state manipulation and precise spectral mea-
surement of many charged atoms and molecules. One application of this technique
is precise spectroscopy of molecules, which can improve searches for the time varia-
tion of the proton-electron mass ratio (µ). By co-trapping the molecular ion with an
atomic ion, the two ions are coupled through the Coulomb interactions. Because of
this, the cooling and internal state preparation of an atomic ion, in our case 9Be+,
are extended to the molecular ion.

My thesis describes the construction of a stable and versatile laser system for
efficient cooling, state preparation, and detection of 9Be+. We demonstrate a laser
lock that transfers the frequency stability of a helium-neon laser to less stable lasers
using a Fabry-Perot cavity. An external frequency reference, provided by a thallium
fluoride molecular transition, shows that the system is stable to within 200 kHz over
3 hours. We also performed injection current modulation on an external cavity diode
laser in order to produce a frequency detuning critical for the cooling scheme. The
current setup can achieve a maximum modulation frequency of 6.6 GHz with 3 % of
the output power in an optical sideband.
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Chapter 1

Introduction

We plan to build a system capable of performing spectroscopy on a variety of charged

species. Such a system will be a versatile tool for studying species whose more com-

plicated structures previously hindered precise spectral measurements. A useful ap-

plication of this system is to measure the time variation of the proton-electron mass

ratio (µ) using molecules. Since several physical theories seeking to unify general

relativity with quantum mechanics predict that µ changes over time, more sensitive

measurements of dµ/dt, which this setup can potentially offer, can serve to confirm

or disprove these theories.[1]

In contrast to atoms, molecules lack the structural simplicity that allows for effec-

tive cooling and internal state preparation. This is why despite having energy tran-

sitions that are more sensitive to variations in µ than atoms, molecular spectroscopy

has not been a popular choice for measuring dµ/dt. Our goal is to take advantage of

the more sensitive spectroscopy transitions in molecules while exploiting the favorable

features of the atoms using quantum logic spectroscopy.
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We realize quantum logic spectroscopy in three steps. First, we co-trap a diatomic

molecular ion (designated the spectroscopy ion) with an atomic ion (designated the

logic ion) in a linear Paul trap designed by Shenglan Qiao.[2] Second, the spectroscopy

ion is sympathetically cooled to its translational ground state because of the motional

coupling between the two ions through Coulomb interactions.1 The spectroscopy ion

is then further cooled to its rotational ground state without disturbing its translational

and vibrational states. Third, we manipulate the internal states of the spectroscopy

ion in order to measure the desired transition frequency. We are currently constructing

the apparatus for the first two steps.

My thesis focuses on the second step, where a stable laser system is required for

sympathetic cooling and state initialization. In this thesis, I demonstrate a frequency

lock that stabilizes the frequency of the lasing source, which is an external cavity

diode laser (ECDL). I also show that injection current modulation of the ECDL is

a convenient and viable method that allows us to obtain all of the required laser

frequencies from the ECDL.2

For the rest of this chapter, I first discuss the reasons behind our choice of the logic

ion, 9Be+, in Sec. 1.1. Then I provide some details about the cooling methods that

we plan to use–Doppler cooling and resolved sideband cooling. The implementation

of the cooling scheme will directly motivate the rest of this thesis.

1In room temperature, the molecules are mostly in their vibrational ground states.
2The ECDL provides a laser beam at 940nm, which is converted into 313nm using the setup

designed by Celia Ou.[3] Note that frequency conversion happens after injection current modulation
and both the original ECDL output and the modulated output are frequency converted with the
frequency difference between them preserved.
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1.1 Why Beryllium Ion?

Since quantum logic spectroscopy relies on the Coulomb interaction between the logic

ion and the spectroscopy ion, 9Be+ satisfies the very first criterion: being an ion. With

a single valence electron, 9Be+ also has a simple and well-studied structure that makes

it a popular choice for atomic trapping and cooling. It is also important that 9Be+

has a nuclear spin I = 3/2. When subject to a magnetic field, the nuclear spin

couples with the valence electron spin (S = 1/2) to form hyperfine structures. For

effective atomic state manipulations, hyperfine structures are preferable because of

their relatively large spectral splittings (1.25 GHz for the two hyperfine states we are

interested in) and long decay times (∼ 1015s). [4, p 13]

Fig. 1.1 shows the energy level diagram of a 9Be+. The ground state has a total

of 8 hyperfine states, which I show split under the influence of a magnetic field.3

The first excited states of 9Be+ consist of the fine structure manifold due to spin-

orbit coupling. Each of the resulting P1/2 and P3/2 states also has its own hyperfine

structures: P1/2 contains 8 hyperfine states and P3/2 contains 16 hyperfine states.

Note that the fine structure splitting between the two excited P states is 197 GHz.

This large splitting allows us to safely ignore the P1/2 states when we excite the atoms

to the P3/2 states.

We have designated S1/2|F = 2,mF = 2〉 to be |↓〉 and S1/2|1, 1〉 as |↑ 〉, and the

energy splitting between them corresponds to ∼1.25 GHz. The reason for this labeling

will become obvious when we discuss stimulated Raman transitions in Sec. 1.4.

3For I = 3/2 and S = 1/2, F can be either 1 or 2, and for each F we can have 2F + 1 hyperfine
states corresponding to each allowed mF .
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|F = 2,mF = −2〉
|2,−1〉

|2, 0〉
|2, 1〉

|2, 2〉 = |↓〉

|1, 1〉 = |↑〉
|1, 0〉

|1,−1〉

S1/2

|mF = −2〉 to |mF = 2〉P1/2

|mF = −3〉 to |mF = 3〉P3/2

197 GHz

∆(6.6 GHz)

313.132nm
957.396 THz

fhfs

(∼1.25 GHz)

Figure 1.1: The energy level diagram for 9Be+. The S1/2 hyperfine manifold is illus-
trated. P3/2 contains 16 hyperfine levels and the P1/2 contains 8 hyperfine levels. The
dashed line shows a detuning of 6.6 GHz from P3/2, which will be used for Raman
transitions.

1.2 Internal State Preparation and Detection

In order to reliably detect the internal state of the logic ions, we use a cycling tran-

sition that allows us to continuously observe scattered photons without disturbing

the prepared atomic states. We choose the cycling transition between S1/2|2, 2〉 and

4



P3/2|3, 3〉. Once excited to the P3/2|3, 3〉 state, the atoms can only decay back to

S1/2|2, 2〉 because the selection rule requires ∆mF = ±1 or 0, and there are no ground

states with mF = 3 or 4. Under a detection beam that is resonant with this cycling

transition, the atoms are restricted to cycle only between these two states, leading to

continuous spontaneous emissions.

It is important to make sure that the detection beam stays resonant with the cy-

cling transition for accurate detection. Note that the linewidth of the P3/2|3, 3〉 state

is only 19.4 MHz. If the laser frequency drifts beyond this range, we no longer detect

photons firstly because the laser is no longer resonant with the cycling transition,

and secondly because it cannot drive any other atomic transitions due to its polariza-

tion. This is the principal reason for stabilizing our laser frequencies; the frequency

stabilization scheme is discussed in Chapter 2.

To enable the cycling transition, we need to initiate 9Be+ in the S1/2|2, 2〉 state.

Note that the atoms are distributed among the ground-state hyperfine manifold be-

cause excited states decay quickly. The Doppler beams that we will discuss in the

following section address atoms in all of the ground states because they are detuned

within the linewidth of the ground state. For now, we use the Doppler beams for

optical pumping. Since the S1/2|2, 2〉 state has the highest mF among all of the hy-

perfine states in S1/2, we use right circularly polarized (σ+) Doppler beams because

the selection rule requires that ∆mF = +1 for each excitation. Again by the selection

rule, the excited atom can either decay to a state with the same mF or a higher mF

in comparison to the original state before excitation. Eventually all of the atoms end

up in S1/2|2, 2〉, where they become resonant with the cycling transition.
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1.3 Doppler Cooling

The Doppler beams mentioned in the previous section are named for their roles in

Doppler cooling. Since quantum logic spectroscopy couples the motions of the spec-

troscopy ion and the logic ion, it is crucial to reduce the translational motion of the

logic ions to a known ground state for efficient state manipulations.

In Doppler cooling, the laser is tuned to the red of the resonant frequency. In the

frame of reference of an atom moving towards a laser beam, the laser appears blue-

shifted due to Doppler shift. When the red-detuning of the laser matches with the

amount of blue-shift that the atom perceives, the laser beam becomes resonant with

the atom. The atom thus first absorbs a photon, then emits one due to spontaneous

emission. While the absorbed photon has a definite momentum against the direction

of the atom, the emitted photon has an average momentum of 0 due to the random

direction of emission. The net momentum imparted on the atom causes the atom to

lose kinetic energy, hence lowering its temperature.

In our experiment, we first use a Doppler beam detuned by a few hundred MHz

to address atoms with a wide range of velocities. This prepares the atoms for finer

coolings from a second, less detuned Doppler beam (by half the linewidth of the

excited state) to complete Doppler cooling. While free-space experiments require

three pairs of cooling beams to cool atoms traveling in all directions, our atoms are

already confined to a harmonic potential well4. Because of this, a single Doppler beam

can cool all three atomic motions provided some of the laser’s propagation direction

lies along each trap axis.

4Both the spectroscopy ions and the logic ions will be housed in a linear Paul trap. The potential
within the trap is analogous to a harmonic well.
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Note that although Doppler cooling is an efficient cooling method, it cannot lower

the temperature of the atoms beyond the Doppler limit. This limit is due to the

background heating from the very process of absorption and emission that enabled

Doppler Cooling. To further cool the atoms to sub-Doppler temperatures, we need

to use a second cooling method called resolved sideband cooling.

1.4 Resolved Sideband Cooling

In order to cool the atoms beyond the Doppler limit, we consider their quantized

vibrational motions (labled |n〉) due to the harmonic potential of the trap. Sub-

Doppler cooling involves reducing the atoms to the lowest vibrational levels (|n = 0〉).

We plan to achieve this in two steps. First we use stimulated Raman transitions to

couple | ↓, n〉 with | ↑, n − 1〉. We then repump the atoms to | ↓〉 without exciting

their vibrational motions. The goal is to repeat this process enough times to cool the

atoms to |↓, 0〉.

1.4.1 Stimulated Raman Transitions

The first step in resolved sideband cooling is to couple the vibrational states of | ↓〉

and | ↑〉 using stimulated Raman transitions. As Fig. 1.2 shows, the setup requires

two laser beams that indirectly couple |↓, n〉 and |↑, n− 1〉 through a third, transient

excited state far detuned from the actual excited state.

In stimulated Raman transitions, the atom absorbs a photon corresponding to the

energy of one of the laser beams, then emits one with the same energy as the other

laser beam. While spontaneous emission produces photons with exactly the energy

7



P3/2

|↑, n− 1〉

|↓, n〉

∆=6.6 GHz

fr

fb

Rabi flopping

fhfs

1.25 GHz

n = 0
n = 1
n = 2

|↑〉

n = 0
n = 1
n = 2

|↓〉

fn

Rabi flopping

Figure 1.2: Left: Stimulated Raman transitions between | ↑〉 and | ↓〉 through a
transient excited state detuned by 6.6 GHz from the actual excited state. Two laser
beams are required for this operation: the Red Raman beam with frequency fr and
the Blue Raman beam with frequency fb. Right: The first three vibrational states of
|↑〉 and |↓〉. The Raman transitions result in the coherent coupling between |↑, n−1〉
and | ↓, n〉. Note that adjacent vibrational states differ by fn in angular frequency.
Both figure are not drawn to scale.

difference between the excited state and the ground state, stimulated emissions in

Raman transitions allow control of the energy and direction of the emitted photon.

Since the linewidth of a P3/2 hyperfine state is 19.4 MHz, a large detuning such

as 6.6 GHz significantly suppresses spontaneous emissions, effectively reducing the

transition to only between the two states of interest.

In order to couple |↓, n〉 and |↑, n−1〉, the frequency difference of the two Raman

beams has to correspond to the energy difference between these two states. Given

the hyperfine splitting between these two states (fhfs), which can be controlled by

adjusting the strength of the magnetic field, and the frequency difference between

two adjacent vibrational states (fn), the required frequency difference between the

two lasers should be fhfs−fn. These two laser beams cause the population distribution
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of 9Be+ to oscillate between |↓, n〉 and |↑, n− 1〉 with a frequency known as the Rabi

frequency. A similar phenomenon is observed in nuclear magnetic resonance, where

an oscillating magnetic field causes the nuclear magnetic moment to oscillate between

two spin states.

With π-pulses, Rabi flopping leaves the atoms in the | ↑〉 state. We need a way

to switch the atoms back to | ↓〉 while preserving its lower vibrational state, and a

repump laser is used for this purpose.

1.4.2 Laser Repumping

To transfer | ↑, n − 1〉 to | ↓, n − 1〉, we use a σ+ polarized laser beam to excite the

atoms to a state in P3/2 with mF = 2. Due to the large hyperfine splitting (1.25

GHz) in the ground state, this laser is resonant with | ↑〉 while largely detuned from

| ↓〉. From the excited states, angular momentum selection rules allow the atoms to

decay to one of the three ground states: |2, 2〉, |2, 1〉, or |1, 1〉.5 In the first case, we

have successfully arrived at | ↓, n − 1〉. In the second case, we apply an rf drive at

a frequency of fhfs to pump the atoms back to | ↑〉. The atoms from the last case,

along with those pumped by the rf drive to | ↑〉, will be resonant with the repump

laser beam again. Through repeated Raman transitions and repumping, all of the

atoms are eventually transferred to |↓, 0〉, where they are no longer coupled with |↑〉

because there is no |n = −1〉 vibrational level.

5The selection rule is ∆mF = ±1, 0, but there is no |2, 3〉 or |1, 3〉 states.
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1.5 An Overview

We have introduced all of the required laser beams for state initialization, detection,

and cooling of the logic ion. Fig 1.3 lists all six required laser beams with specific

frequencies and polarizations attached. Through injection current modulation of

the external cavity diode laser (ECDL), we obtain an optical sideband detuned by

∆ (∼ 6.6 GHz) from the carrier frequency (fL).6 The detection, cooling, detuned

cooling, and repump beams can be obtained from modulating the optical sideband

using acousto-optic modulators (AOMs). The carrier is also modulated by AOMs to

generate the Red Raman and the Blue Raman beams. Note that with δ at around 600

MHz, the detuned cooling beam can address all of the hyperfine levels in the ground

state. The polarization choices of the first four σ+ polarized lasers listed in the figure

are required for angular momentum conservation, as discussed earlier in this chapter.

Because non-resonant laser fields cause Stark shifts in |↓〉 and |↑〉, both Red Raman

and Blue Raman beams contain σ+ and σ− in order to minimize the energy shift.[5]

In addition, the Blue Raman has π polarized light so that along with the σ− light in

Blue Raman, we obtain the desired Raman transitions.

My thesis helps to build such a laser system as specified in Fig. 1.3. In Chapter

2, I present a laser locking system that I built to stabilize the frequencies of these

lasers. In Chapter 3, I provide the details of using injection current modulation to

produce the detuning (∆) from the excited states.

6The figure shows ∆ ∼9 GHz, that was our original plan. As we discovered in Chapter 3, our
ECDL can only be modulated up to 6.6 GHz. This detuning should still be large enough.
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Figure 1.3: The laser beams needed for cooling and state initialization of 9Be+. fL
refers to the carrier frequency of the external cavity diode laser; δ and the specified
frequencies detunings in MHz are realized using the acousto-optic modulators and ∆
results from injection current modulation. Figure courtesy of Professor Hanneke.
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Chapter 2

Frequency Stabilization: The

Scanning Fabry-Perot Cavity

A stable lasing source is integral to an effective quantum logic spectroscopy setup.

More specifically, efficient state preparation and cooling of the logic ion, 9Be+, requires

that our lasers are stable enough for the linewidth of a P3/2 excited state, which is

19.4 MHz (refer to Chapter 1 for detail).

In this chapter, we present a laser locking system that uses a confocal Fabry-Perot

cavity to transfer the frequency stability of a helium-neon laser to our tunable lasing

source, the external cavity diode laser (ECDL). The F-P cavity detects laser frequency

drifts by comparing the wavelengths between the ECDL and the HeNe laser using a

common length reference between two spherical mirrors. In order to obtain sensitive

detection, which is critical for effective frequency stabilization, the common length

reference must be kept stable. This concern guides the construction of the cavity as

we took measures to stabilize the temperature and pressure within the cavity.
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2.1 System Setup

A laser becomes resonant with the Fabry-Perot (F-P) cavity when an integer multi-

ple of the laser’s wavelength fits into its beam path within the cavity. At resonant

conditions, we observe transmission peaks at the outputs of the F-P cavity. As we

continuously scan the cavity length at a constant speed, a stable laser registers trans-

mission peaks at equal time intervals. When the frequency drifts, this time interval

varies. This allows a scanning F-P cavity to translate frequency drifts into transmis-

sion peak drifts when observed on an oscilloscope.

F-P Cavity

HeNe

ECDL
PD1PD2

Dichroic
beamsplitter

Dichroic
beamsplitter

mirror

Figure 2.1: F-P cavity setup. The HeNe and IR beams are combined to a dichroic
beamsplitter, where the HeNe beam is reflected and the IR is transmitted. The
combined beam passes through the F-P cavity, until another dichroic beamsplitter
splits them up on the other end of the cavity. Each beam is then detected by a
photodetector. Note that some auxiliary mirrors used in practice to help direct beams
are omitted in this figure.

We use a helium-neon laser (HeNe)1 as a stable frequency reference. By measuring

1We use an ultra stable Melles Griot HeNe (Part number 05-STP-901). Its stability in frequency-
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the change in the time interval between an ECDL transmission peak and a HeNe

transmission peak, we generate an error signal proportional to the laser frequency

drift.

As shown in Fig. 2.1, the HeNe and the IR beam from the ECDL are combined

onto the same beam path using a dichroic beamsplitter (Semrock FF678-Di01); the

HeNe is reflected while the IR is transmitted. The converging lenses on both sides

of the cavity enhance output signal by counteracting the diverging effects of the end

mirrors.2 At the output of the F-P cavity, the HeNe beam is separated from the IR

using another dichroic beamsplitter.3 The transmission peaks of individual lasers are

independently detected by photodectors.

Fig. 2.2 illustrates how we implement the laser lock. As shown, the locking scheme

is facilitated by a data acquisition device (NI DAQ, part number USB-6343), which is

controlled by a Labview program.4 We obtain a triangle wave signal from the DAQ,

which is amplified by a piezo driver before sending to the piezo in the F-P cavity. The

cavity length is scanned as this piezo (Noliac NAC2123-A01) expands or contracts

depending on the supplied voltage. The resulting transmission signals are detected

by photodetectors and sent to the computer through the DAQ. By detecting changes

in the spacing between a HeNe transmission peak and an IR transmission peak,

the Labview program calculates a corresponding correction based on a proportional-

integral-derivative (PID) algorithm. Since the ECDL frequency can be tuned by

stabilized mode is specified at 3 MHz over 8 hours.
2Our end mirrors are plano-concave, as demonstrated in Fig. 2.1. Without the converging lens,

laser light incident on an end mirror will diverge within the cavity, causing the beam path to stray
too far from the central axis and resulting in poor output signal.

3We divide one Semrock beamsplitter into two independent beamsplitters.
4The program is titled JeffLock; it is inherited from the DeMille lab at Yale. It is the only

Labview program needed to automatically lock the laser frequency to the HeNe.
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tilting the diffraction grating (see Sec 2.3.1 for detail), the DAQ sends a correction

voltage to another piezo driver, which controls the piezo behind the diffraction grating

to correct for frequency drifts.

OUT OUT IN IN

Piezo Driver 2

PD1-HeNe

PD2-IR

DAQ (NI USB-6343)

F-P Cavity

HeNe
Melles Griot 05-STP-901

Piezo Driver 1

ECDL
diffraction

grating

Computer

IR

HeNe

Figure 2.2: An illustration of the analog inputs and outputs of the data acquisition
device (DAQ). The DAQ controls the piezos in the F-P cavity in the ECDL. It also
reads HeNe and IR outputs from the photodetectors.

2.2 The Confocal Fabry-Perot Cavity

In the previous section, we see the central role of the Fabry-Perot (F-P) cavity in our

locking scheme. We now introduce the confocal model that we adopted in our lab

and describe its properties.
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2.2.1 The Basic Theory

An F-P cavity consists of two end mirrors whose highly reflective surfaces face each

other. A beam of light entering the cavity will make multiple passes between the

mirrors. When these beams interfere constructively, the intensity of light builds up

dramatically. Under this resonant condition, the high laser intensity within the cavity

leads to transmission despite low transmittance of the end mirrors.5

In a confocal F-P cavity, the foci of two concave spherical mirrors coincide at the

center of the cavity. This requires that the two end mirrors have equal radius of

curvature(R) and that their separating distance(L) is equal to R. As will be seen, the

confocal design is convenient because its behavior is largely insensitive to the shape

and position of the input beam.

L = R

Incident Beam

Front Output 1

Front Output 2

Rear Output 1

Rear Output 2

focus

Figure 2.3: The beam path of a parallel beam incident on the F-P cavity. Arrows
indicate propagation directions. The focal point is located at the center of the cavity,
where the beam paths intersect. The distance between the mirrors corresponds to
the radius of curvature (R). This figure is not drawn to scale.

In Fig. 2.3, the incident beam travels a distance close to 4L within the cavity

before retracing its path. At resonance, there are two output beams at each side of

5High reflectivity of the end mirrors necessarily corresponds to low transmittance. Since the
resonant effect is more important, higher reflectivity is usually better.
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the cavity. While the front outputs diverge, the rear outputs propagate in the same

direction as the incident beam. In principle all four outputs observe transmission

peaks. In practice we choose one of the rear outputs as our signal because of the

relatively small beam size.

Note that the incident beam does not have to be propagating along the central axis

of the cavity. Any incident beam parallel to the central axis will have a beam path

similar to the one described in Fig. 2.3. This makes the confocal cavity insensitive to

beam positioning, which avoids many complications.

As we vary the cavity length L, constructive interference occurs when there is an

integer number of wavelengths in the beam path. At constructive interference, the

laser intensity is greatly amplified due to the highly reflective mirrors. This results in

transmission peaks at the outputs of the F-P cavity whenever the following condition

is satisfied:

nλ = 4L, (2.1)

where n is the integer mode number and λ is the wavelength of the incident beam.

According to Eq. 2.1, changing L by λ/4 maintains the cavity at resonance. There-

fore, adjacent transmission peaks differ in L by λ/4. This distance is also called the

Free Spectral Range(FSR) of the cavity.

The FSR is more conventionally expressed in terms of frequency. Recall that

wavelength and frequency are related by the speed of light. The frequency difference

between two adjacent transmission peaks is

FSR =
c(n+ 1)

4L
− cn

4L
=

c

4L
, (2.2)
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where c is the speed of light in vacuum.6 Since the radius of curvature for the mirrors

is 100mm, the cavity length at confocal condition is also 100mm. This corresponds

to an FSR of 750 MHz.7

Another important parameter for F-P cavities is the finesse(f). It relates the full

width at half maximum(FWHM) of the transmission peaks to the FSR:

f =
FSR

FWHM
. (2.3)

Since the finesse is related to the energy stored in the resonant cavity, it is determined

by the reflectivity (r) of the cavity mirrors[6, p 119]:

f =
π
√
r

1− r
. (2.4)

For our mirrors, r = 97(1)%,8 leading to a calculated finesse of 103(35). Hence we

expect the FWHM of our transmission peaks to be around 7(3) MHz. For logistical

reasons, we used a different confocal F-P cavity for injection current modulation in

Chapter 3. For that F-P cavity, the FSR is 500 MHz and the finesse is > 1569. Be-

cause of the extremely high finesse, the observed transmission peaks during injection

current modulation are much narrower.

The above discussion offers an intuitive way to think about the confocal F-P cavity.

6In reality, our cavity is not in vacuum. The speed of light in the cavity is slightly less than c.
Since what we want is a stable beam path in between the mirrors, we take measures to stabilize the
temperature and pressure within the cavity to keep the index of refraction of the air stable.

7The FSR is technically not a constant–it changes by ≈1 kHz for adjacent modes. By fitting
a transmission peak to the Lorentzian distribution, the uncertainty of the peak position is on the
order of a few hundred kHz. Since we are only scanning over a few modes, the FSR is effectively
constant for our purposes.

8Note that this is the reflectivity of laser power, not the electric field.
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In reality, the mode number n in Eq. 2.1 includes both the axial and transverse mode

numbers. The axial modes represent the standing waves between the two cavity

mirrors. The transverse modes are manifested in the electric field distribution of the

beam’s profiles perpendicular to the direction of propagation. These field distributions

can be described by a combination of the Gaussian distribution and the Laguerre

polynomials. The fundamental transverse mode is just a Gaussian beam profile; laser

outputs are typically in this mode.

Taking both kinds of resonant modes into consideration, the resonant condition

in terms of frequency is actually [7]

ν =
c

2L
[m+

1

π
(1 + l + p) cos−1(1− L

R
)], (2.5)

where m is the axial mode number, l and p represent the angular and radial mode

number for the transverse modes. Since cavity resonance depends on transverse modes

as well, it becomes necessary to match the beam size and divergence of the incident

beam with those of the cavity. This practice is called mode-matching.

Fortunately, for confocal cavities, L/R = 1 and cos−1(1 − L/R) = π/2. Eq. 2.5

simplifies into

ν =
c

4L
[2m+ 1 + l + p]. (2.6)

If l + p is odd, ν = nc/2L, where n is an integer. On the other hand, if l + p is even,

ν = nc/2L + c/4L. The even transverse modes have resonant frequencies exactly

halfway between the odd transverse modes. This is why our FSR is effectively c/4L

as mentioned in Eq. 2.2 and the transverse modes are degenerate within the cavity.

This significantly simplifies laboratory procedures because there is no need to shape
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the beams to match the transverse modes within the cavity.

2.2.2 Athermal Cavity Design

A functional cavity requires some essential features. First, the cavity mirrors have

to be aligned and secured in place. The distance between the two mirrors has to be

adjustable in order to achieve the confocal condition. As we introduced in Sec. 2.1,

the cavity also needs a piezo that scans the cavity length over a few transmission

peaks.9 Secondly, as part of a stabilizing scheme, it is important to keep the system

itself stable under usual lab temperature and pressure variations.

Figure 2.4: SolidWorks assembly of the actual cavity design.

With all these considerations in mind, we adapted a clever F-P cavity design

from the Demille Group at Yale University. Fig. 2.4 shows a 3-D model of the actual

9Recall that the FSR is equal to λ/4 for confocal F-P cavities. If we want to observe 10 trans-
mission peaks, we only need to vary the cavity length by around 2µm.
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design. The cavity has two steel fittings glued to each end of a quartz tube. Each steel

fitting contains a through-hole that allows laser input and output. At the fixed end,

a ring-shaped piezoelectric transducer is sandwiched between a flat-surfaced shoulder

around the through-hole and a cavity mirror. At the adjustable end, the outer steel

fitting contains a screw-in inner piece; the other cavity mirror directly rests on the

flat-surfaced shoulder around the through-hole in the inner piece. This mobile inner

piece allows us to adjust the distance between the two cavity mirrors manually. Both

cavity mirrors are secured in place by tightening the retaining rings on the o-rings

behind the mirrors. The two piezo leads are channeled through the grooves as shown

in Fig. 2.4. Note that the shoulder at the fixed end is carefully aligned with the rim

of the quartz tube to within a few thousandths of an inch; this is a crucial feature for

the athermal design as we will come to explain soon.

This design is both realistic to build and user-friendly. As the assembly in Fig. 2.4

shows, there are very few components. Moreover, there are only two components that

require high machining precision. The first is the alignment between the shoulder at

the fixed end and the quartz rim as described in the previous paragraph. The second

is the length of the quartz tube. As for user-friendliness, the mobile inner piece allows

manual adjustments of the cavity length while the piezo at the fixed end implements

finer adjustments for transmission peak observations.

Apart from these beneficial features, the design also maintains a stable cavity

length under small temperature drifts. To see how this feature is made possible, we

begin by determining the cavity length from the dimensions of the cavity components.

Closely examining Fig. 2.4, the cavity length can be calculated from the following

dimensions:
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1. The length of the quartz tube (q). It fixes the distance between the two steel

fittings.

2. The distance between the cavity mirror and the rim of the quartz tube at the

adjustable end. We refer to this distance as x. In our case, the inner piece extends

into the quartz tube so that the mirror is entirely contained within the tube. This is

why the cavity length is shorter than q, hence we subtract x from q when calculating

the cavity length.

3. The thickness of the piezo actuator (p). At the fixed end, the mirror is stacked

on top of the piezo, which means p constitutes part of the cavity length.

4. The curvature length (y) of the mirrors. This is the distance between the piezo

and the concave surface of the spherical mirror. The geometrical detail is presented in

Fig. 2.5.10 We do not need to consider y for the mirror at the adjustable end because

that distance is part of q.11

For an athermal F-P cavity, the cavity length remains constant under small tem-

perature fluctuations. In terms of the variables introduced in the list, the cavity length

is just q − x + p + y. Under a temperature change, the relevant components expand

or contract individually, yet the total change in cavity length remains unchanged if

αquartzq − αsteelx+ αpiezop+ αmirrory = 0, (2.7)

where the α’s are the coefficients of thermal expansions for each material indicated

10In order to use y, which is the distance from the center of the mirror to the piezo, we are assuming
that the beam paths are close to the central axis of the cavity. This is a reasonable approximation
since the mirrors are small (mirror diameter is 12.7mm).

11If we want to be really precise here, the mirrors have a slightly different coefficient of expansion
from the quartz tube, so in principle we should also consider y at the adjustable end. However,
since the coefficient of expansion for the cavity mirrors is 0.57×10−6µm/m-oC at 20oC and it is
0.4×10−6µm/m-oC at 20oC for the quartz tube, this approximation is close enough for our purposes.
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Figure 2.5: Geometry of a spherical mirror. R is the radius of curvature, r is the
mirror radius, and y is the curvature length.

by the subscripts.

Since the piezo thickness, curvature length, and the coefficients of thermal ex-

pansions are given, we need to find a combination of q and x that satisfies Eq. 2.7.

Furthermore, the confocal condition allows us to substitute q+p+ y−L for x. Using

this constraint and Eq. 2.7, we obtain the required length for the quartz tube in order

for our cavity to be athermal. Note that in practice, x automatically satisfies the

constraint when we tune the cavity to confocal condition.

Figure 2.6: An exploded view of the sealed chamber containing the F-P cavity.

To further improve the stability of the F-P cavity, we acoustically isolate it by
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Figure 2.7: Left: a photo of the assembled F-P cavity. The piezo leads are soldered
to an SMA connector for convenience. Right: a photo of the cavity enclosed in the
chamber.

wrapping it in a piece of styrofoam-cushioned lead sheet and enclose it in a sealed

chamber to keep the pressure constant within the cavity. A thermistor (Thorlabs

TH10K) is placed next to the steel fitting at the fixed end to monitor the temperature

within the chamber when needed. Fig. 2.6 shows an exploded view of the SolidWorks

drawing for the whole assembly; a photo of the F-P cavity and the sealed chamber

are also attached in Fig. 2.7.

The complete laser lock setup is mounted on a 1’×2’ breadboard, as shown in

Fig. 2.8. This mobile board contains both the HeNe tube and the F-P cavity, along

with the beamsplitters, mirrors, and photodetectors. The laser beam to be stabilized

is introduced into the system by mounting the optical fiber on a fiber mount situated

between the HeNe tube and the F-P cavity. By fixing the fiber mount in place, there
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is no need for realignments when switching to a different laser. All of these features

make our laser lock a compact, convenient, and versatile system.

Figure 2.8: The completed setup on a mobile breadboard.

2.2.3 Obtaining the Confocal Condition

Before we wrap up the F-P cavity in a pressure chamber, we need to first adjust the

cavity length to confocal condition. The cavity length can be adjusted by manually

changing the position of the inner piece. The tuning procedure relies on two key

features that distinguish resonant peaks at confocal condition: the symmetry of the

transmission peaks and the dramatic increase in output intensity.

The symmetry in the transmission peaks is related to the transverse mode-degeneracy

of the confocal F-P cavity. When the transverse waves are non-degenerate, the output

intensity of the transmission peaks is distributed over many non-axial peaks, causing

the transmission peaks to be asymmetric. The dramatic increase in output intensity
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is due to the mode degeneracy of confocal cavities. While the input beams have to

be mode-matched for non-confocal cavities, the confocal cavity is not as sensitive to

beam alignments and beam sizes.

Fig. 2.9 shows a transmission peak of the HeNe at confocal condition. The peak

is fitted to a Lorentzian distribution:

f = y0 +
a

1 + (x−x0
b

)2
, (2.8)

where the peak height is conveniently a and the full width at half maximum (FWHM)

Figure 2.9: A HeNe transmission peak fitted to a Lorentzian. Fit parameters from
the regression are attached, where R is the coefficient of correlations for the fitted
line and the rest are explained in Eq. 2.8.
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is 2b. The fitted parameters are attached to the figure. The coefficient of correlations

(R) is very close to 1, indicating a close fit of the resonant peak to the Lorentzian

distribution. Using the time interval between two transmission peaks and the fact

that our confocal cavity FSR is 750 MHz, we calculate the FWHM of the transmission

peak in Fig. 2.9 to be 18(9) MHz. This is consistent with theoretical prediction of

7(3) MHz from the cavity finesse.

The large uncertainty for the calculated FWHM is related to the irregularity in

the time interval observed between two successive peaks. As the piezo drives over a

full triangle wave, the nonlinear behavior is evident in Fig. 2.10. If fact, the width of

the peaks generally narrows as the piezo voltage increases as well. These observations

imply that the piezo is more responsive to higher voltages.

The non-linear piezo response does not really affect system performance because

we are only scanning over 2 transmission peaks and the piezo response is locally quite

linear. More importantly, frequency lock relies on keeping the distance between a

diode laser transmission peak and a HeNe transmission peak constant. Although the

error signal might not linearly reflect frequency drifts, the system should still be able

to detect error signals and lock the laser. However, non-linear piezo response does

complicate inferring precise frequency drifts from changes in peak locations.

2.3 The External Cavity Diode Laser

ECDL’s are versatile because of their narrow linewidth, tunability, single-moded

ouput, and often times ease of construction. [8] However, precisely because it is tun-

able, the ECDL is not locked to an atomic transition thus requires an external laser
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Figure 2.10: HeNe transmission peaks obtained from scanning the cavity length with
a triangle wave. Note that they get closer at higher piezo voltages, indicating a faster
piezo displacement there.

lock such as the one we are building. The major components of an ECDL are a

laser diode and a diffraction grating. The laser diode contains its own optical cavity

between its two crystal facets (refer to Chapter 3 for more details). Like the F-P

cavity, the laser diode lases at frequencies corresponding to constructive interferences

within its optical cavity, leading to a broad emission spectrum. The diffraction grat-

ing selects a very narrow range of these emitted frequencies as the output of the

ECDL.

The “external cavity” refers to the optical cavity formed between the rear crystal

facet of the laser diode and the diffraction grating. Fig. 2.11 is a photo of our ECDL,
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where I have labeled the beam path. The frequencies that the diffraction grating

selects will be reflected by a mirror fixed at an angle with the diffraction grating.

Note that the mirror co-tilts with the diffraction grating such that the output beam

path drifts minimally during frequency tuning.

Figure 2.11: A photo of our external cavity diode laser. Relevant parts are labeled
and the beam path is illustrated.

As with the F-P cavity, we can determine the free spectral range of the external

cavity by noting the beam path of the laser within the cavity. In this case, the beam

path is twice the cavity length because the beam only makes one round trip before

repeating its original path. The expression for the FSR is therefore

FSR =
c

2Leff

, (2.9)

where c is the speed of light, and Leff is the effective cavity length. According to our

measurement of the cavity length, the FSR is estimated to be around 2.4 GHz. It is

hard to determine the effective cavity length because as mentioned earlier, the laser
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diode also has its own optical cavity. This estimate is therefore revised in Sec. 3.3.2

to ∼2.2 GHz.

Since temperature drifts affect ECDL frequency stability, we monitor its tem-

perature through a thermistor inserted into the steel case of the ECDL. We control

the temperature of the ECDL using a thermoelectric module driven by Thorlabs

TED200C.

2.3.1 The Diffraction Grating

d

Grating NormalGrating Normal

α β

d sin β

d sinα

Figure 2.12: Illustration of rays incident on a blazed diffraction grating. The path
differences are marked in red.

The diffraction grating contributes to the tunability and the narrow linewidth

of the ECDL. Since both of these qualities are essential to our laser system, it is
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worthwhile to discuss the mechanism behind this frequency selection.

Light incident on a diffraction grating will be diffracted into a series of interference

patterns. Consider the geometry in the Fig. 2.12, where we show two grooves on the

surface of a blazed diffraction grating. The diffracted rays from adjacent grooves

(separated by d) interfere constructively when the total path difference between the

two rays shown in the figure is an integer multiple of the incident wavelength (λ), or

d(sinα− sin β) = mλ, (2.10)

where α and β represent the incident and diffracted angle with respect to the grating

normal and m is the integer diffraction order number.

If the diffracted light traces back to its incident direction, or α = −β, it is in

Littrow grating condition:

2d sinα = mλ. (2.11)

The feedback from the optical cavity formed between the rear crystal facet of the diode

and the diffraction grating enhances stimulated emission at the Littrow wavelength.

According to Eq. 2.11, changing the angle of incidence determines the wavelength

that satisfies the Littrow condition, which in turn determines the ECDL output.

In practice, we change the incident angle by tilting the grating normal. A piezo-

electric transducer is placed behind the grating mount to control the selection of

desired laser outputs. We use a blazed diffraction grating (Thorlabs GR-13-1208)

in our ECDL. With 1200 grooves per mm, the distance between adjacent grooves is

around 0.8µm. Considering the geometry of our diffraction mount, the diffraction

grating will be tilted at angle of 34.3◦ with respect to the external cavity axis in order
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to select the 940nm beam. My calculations suggest that varying the laser wavelength

by 1FSR requires a piezo displacement of ∼ 30nm. This translates to a voltage of

around 2 volts for our Noliac piezo actuator (part number NAC2123-A01). In reality,

the piezo is less responsive than specified and requires much higher voltage.

2.4 System Performance

We successfully locked our ECDL to the HeNe using the setup presented in Sec. 2.1.

However, the actual frequency stability of the ECDL is determined by the stability

of the HeNe, the F-P cavity, and the precisions of the detection and software. This

means that we need a second frequency reference to assess the stability of the system

while it locks a laser to the HeNe. The mobile setup mentioned earlier in Sec. 2.2.2

conveniently allows us to adapt the laser lock to another laser. For testing purposes,

we use our system to stabilize the frequency of a laser (not our ECDL) that is resonant

with a thallium fluoride molecular transition in Professor Hunter’s lab.12 With this

setup, the molecular transition serves as the second frequency reference.

2.4.1 System Stability

A laser beam excites the thallium fluoride molecules from the ground state to one of

the excited states when its frequency corresponds to the energy difference between

the two internal states. Immediately following the excitation, spontaneous emissions

release photons that are counted with a photomultiplier. Since excitation is extremely

sensitive to laser frequency, the number of emitted photons changes drastically for

12The TlF transitions we observe are between the excited states (B3Π1(0)) and the various vibra-
tional levels of the ground state (X1Σ+(ν)).[9]
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small laser frequency drifts.

Figure 2.13: Thallium Fluoride Q70 vibrational level transition peak. Each point is
an average of 20 consecutive photon counts at the same frequency. A weighted linear
fit to the slope on the high-frequency side of the peak is marked in red.

In order to relate photon counts to the laser frequency, we vary the laser frequency

at increments of 0.5 MHz while recording the corresponding photon counts. The

result is a transmission peak as plotted in Fig. 2.13. Each data point in this figure

is an average of 20 consecutive photon counts at the same laser frequency. The peak

represents where the laser is most resonant. Fig. 2.13 shows that the linewidth of the

TlF Q70 vibrational level transition is less than 10 MHz.

Since the photon counts are most sensitive to frequency changes at the slopes of

the transition peak, we lock the laser in the region marked in red in Fig. 2.13. We fit

the data in this region to a line, taking into consideration the standard deviations of
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each averaged photon count. The resulting fit parameters are used to convert photon

counts into frequency.

Figure 2.14: Frequency stability of the locked laser measured using the TlF molecular
transition. The frequencies are converted from photon counts (also shown in this
figure) using the linear fit parameters from Fig. 2.13

With the lock operating, variations in photon counts over a period of 3 hours are

plotted in Fig. 2.14. Using the linear fit from the transition peak, we convert the

photon counts into frequencies; the result is plotted in the same figure. Because we

selected the declining slope where photon counts decrease with increasing frequency,

the two plots in Fig. 2.14 are inverted. Note that throughout the 3 hours, frequency

drifts are contained within a 2 MHz interval, which is better than the specified HeNe

stability of the same amount for 1 hour.

The effectiveness of our laser lock is most apparent when we unlock the laser

34



Figure 2.15: Laser frequency unlocked at the slope of the TlF Q70 transition peak.

frequency at the end of the 3 hour test. Fig. 2.15 shows that in a matter of seconds

the frequency drifts off the transition peak. Note that the flat tail at the end merely

represent background photon counts.

The Allan deviation plot is often used to show stability over different time scales.

To obtain Fig. 2.16, we first partition the data shown in Fig. 2.14 into all possible

bin sizes, which ranges from 2 seconds to about 1.5 hours. We then calculate the

standard deviation for each bin size.13 Notice that I have boxed out a region where

the Allan deviation declines before it become erratic. The decline shows that our

locking scheme is effectively controlling frequency drifts at a time scale of about 10

minutes. The erratic oscillations at the end of the plot is due to the increasing bin

size and decreasing number of bins used to calculate the standard deviations. The

13This calculation is explained in more detail in Appendix B.
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Allan deviation plot shows that by using our locking system, the laser–and more

importantly the system–is stable to within 200 kHz over 3 hours. Our system is

performing exceedingly well!

2.4.2 Reaction to Temperature Drifts

When building the cavity, we emphasized the athermal design and the various features

added to isolate the cavity from its surroundings. We now test the merits of these

measures by observing how the system responds to temperature drifts.

We wrap a heater tape around the pressure chamber containing our F-P cavity.

The thermistor within the pressure chamber reports a linear change of temperature

at 0.003(1)oC/s. To keep this number in perspective, the normal temperature drift

Figure 2.16: Allan deviation of laser frequency in log-log scale. The Allan deviation
in the boxed region indicates long term stability.
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within the cavity as reported by the same thermistor is only around a factor of 100

less than this.

Figure 2.17: Frequency drift due to temperature change of the F-P cavity. Laser
frequency is locked throughout. The plot is fitted to a quadratic curve with the
parameters attached to the figure.

Fig. 2.17 shows the frequency drift under a consistent temperature change while

the laser is locked. The system drifted over 1 MHz over 3oC. With a stability of

around 200 kHz, a temperature drift of ∼0.6oC will degrade the system. Since lab

temperature rarely fluctuates this much, the laser lock is, as planned, “athermal” for

small temperature variations.

The quadratic fit in Fig. 2.17 shows that the laser frequency seems to stabilize

towards the end at higher temperatures. We are not sure about the reason behind

this seemingly improving locking performance.
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Figure 2.18: Laser power drift for the same time duration as Fig. 2.14.

2.4.3 The Other Factors

It is important to keep in mind that the detection of the emitted photons depend on

other factors, most notably incident laser power. Variations in these factors contribute

to the observed frequency drifts, which might exaggerate the actual frequency drifts.

Fig. 2.18 shows the laser power drift as we took the data in Fig. 2.14. We observe a

discontinuous change in laser power half way into the test. Since this fluctuation is

mirrored in the observed photon counts, the laser power drift may contribute to the

unusually noisy photon counts in this region.

So far we have been using photon counts observed by one of the detectors. There is

another detector that also tracks the number of emitted photons from the same group

of molecules. Since frequency drifts affect both detectors, photon counts from the two

detectors should correlate to each other if there are no other factors influencing the
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Figure 2.19: Ratio of photon counts obtained by Channel A and Channel B.

photon counts.

In Fig. 2.19, we plot of ratio of photon counts observed by the two detectors over

time. The drift in the ratio demonstrates that there are other factors that influence

the two detectors in different ways.

The F-P locking system has demonstrated its ability to effectively stabilize laser

frequency by maintaining the long term laser stability at around 200 kHz. Moreover,

the various factors that might influence photon detection implies that the system

might actually perform even better than what we observed.
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Chapter 3

Injection Current Modulation

Recall from Chapter 1 that efficient stimulated Raman transitions require a large

detuning, ∆, from the excited state. This large detuning complicates the process

of obtaining the six required laser beams from the stabilized ECDL laser. In this

chapter, we discuss a convenient method that can potentially be an alternative to

expensive electro-optical modulators (EOM’s), which have been shown to work for a

system similar to ours.[10]

Many groups have achieved frequency modulations above 7 GHz with more than

2 % of the carrier power in the first sideband through direct microwave modulations of

external cavity diode lasers. [11, 12] We followed a similar procedure and were able to

modulate our ECDL up to 6.6 GHz with 3 % of the carrier power in the first sideband.

We also investigated the dependence of modulation response on a variety of factors;

most of the observations confirm theoretical expectations. These observations can

help us to choose appropriate conditions to obtain an optical sideband suitable for

our experiments.
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3.1 Experimental Setup

We implement injection current modulation using the setup illustrated in Fig. 3.1.

The DC bias current is combined with an rf signal1 through a bias T, and the super-

imposed signal is used to drive the laser diode. The modulated ECDL output is sent

to a scanning Fabry-Perot cavity similar to the one we built.2 We scan this F-P with

a triangle wave to observe the carriers and sidebands.

We make no attempt to impedance-match the rf power, but we monitor the re-

flected power using a directional coupler. The crystal detector measures the reflected

rf power, which can be used to gauge the actual rf power received by the laser diode.

RF Signal
(Agilent 83650B)

DC Bias
(Thorlabs LDC202C)

Bias T
ZFBT-6GW+

Directional Coupler
(Narda 25288B)

ECDL

Laser Diode
(M9-940-0150-D5P)

F-P
Cavity

Oscilloscope

Crystal Detector
(HP 8472A)

Laser beam

Reflected rf Power

Figure 3.1: Experimental setup for injection current modulation. The rf signal is
combined with the DC bias current through the bias T. The directional coupler picks
up the reflected rf power, which is measured by the crystal detector. The modulated
laser output is analyzed by a scanning F-P cavity. Part numbers are attached when
applicable.

1The rf signal generator is provided by the Friedman Lab.
2This F-P cavity is from the DeMille group at Yale University; it is also a confocal cavity with an

athermal design. In fact, we borrowed the design for our F-P cavity from this model. As discussed
in Chapter 2, this cavity has a higher finesse of above 1500 and an FSR of 500 MHz.
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3.2 Supporting Theory

Sinusoidal modulation of the injection current causes sinusoidal response of the output

electric field. Both amplitude and frequency modulation (AM and FM) result, and

optical sidebands appear in the output of the laser.

3.2.1 p− n Junctions

The main component of a laser diode is the p − n junction. p − n junctions are

constructed by placing a p-doped semiconductor in contact with an n-doped semi-

conductor. The technique of creating these doped semiconductor materials is called

doping, which adds impurity atoms to pure semiconductor materials such as silicon.

As Fig. 3.2 shows, the p-doped region has a lack of electrons, or equivalently a

surplus of electron-holes; the holes in the valence band are mobile and ready to be

combined with free electrons. In the n-doped region, there is a surplus of electrons;

surplus electrons in the conduction band are ready to diffuse across the border to

combine with mobile electron-holes. Note that even with a lack or surplus of electrons,

the atoms in the two regions are neutral in charge.

Near the junction where the two types of material come in contact with each

other, free electrons in the conduction band combine with the electron-holes in the

valence band. Photons are emitted when the electrons combine with electron-holes,

the energy of the released photon is

hν = Ec − Ev, (3.1)

where h is Planck’s constant, ν is the frequency of the emitted photons, Ec and Ev are
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Figure 3.2: Illustration of a p − n junction. Hollow circles represent electron holes
while filled circles represent electrons. The area in between the dashed lines is the
depletion region and the rest of the area remain neutral in charge.

the energy of the conduction and valence band, respectively. This energy difference,

or the bandgap, is determined by the doped semiconductor material. Since there

are many different energies in both the conduction and the valence band, the diode

provides optical gain in a broad range of wavelengths/frequencies. The operation

range of our Axcel laser diode (part number M9-940-0150-D5P) is from 935nm to

945nm.

As the free electrons combine with the mobile electron-holes, a depletion region

is formed where a potential difference is developed across the border because the

neutral atoms are now ionized. At equilibrium, the depletion region electric field

stops more free electrons from combining with the holes. With an injection current,

the n-doped region is constantly injected with free electrons. As a result, free electrons

can combine with electron-holes to produce photons continually. [13, p 182-184]

p − n junctions in laser diodes have a unique structure in which a thin layer of

material is sandwiched between the two doped regions. Since the sandwiched layer

is characterized by a larger refractive index than the surrounding regions due to
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the choice of low-bandgap materials, the recombinations are confined within a small

depletion region known as the active layer. [14, p 82] As injection current increases,

an increasing number of electrons are confined to the active layer to allow stimulated

emissions.

3.2.2 Radiative and Non-radiative Mechanisms

There are three mechanisms that simultaneously occur in a laser diode; an illustration

of each of them is shown in Fig. 3.3. The valence band energy level has been taken as

a ground state while the conduction band energy level can be seen as an excited state,

as their relative energy level is more important in this discussion. Electron-holes in the

active layer can absorb a resonant photon by raising to the excited state. Conversely,

free electrons can spontaneously emit a photon corresponding to the energy difference

of the two states. A photon with an energy equivalent to that of the band gap can

also trigger an electron to combine with a hole, resulting in the stimulated emission

of another photon with the same phase.

Ev

Ec

Absorption

hν

Ev

Spontaneous Emission

Ec

hν

Ev

Ec

Stimulated Emission

hν

hν

hν

Figure 3.3: Illustration of stimulated emissions within an optical resonator.

Laser diodes rely on stimulated emissions to generate a coherent output because
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stimulated emissions can quickly increase the number of photons that are in phase

with each other. Stimulated emissions can only dominate once the electron density

in the active layer exceeds a certain threshold called the transparency value. Beyond

the threshold with a DC injection current, the net rate of stimulated emission per

photon(G) is proportional to the number of electrons(N) in the active layer:

G = g(N −NT ), (3.2)

where g is a constant and NT is the number of electrons at transparency value. For

a typical laser diode, the rate of spontaneous emission(Rsp) also varies linearly with

G by a proportionality constant of around 2. [14, p 107]

Optical gain alone is not enough for laser operation. Remember that a laser diode

also consists of an optical cavity formed by the two cleaved laser facets. The lasing

threshold is met when optical gain exactly compensates for the cavity loss due to

the imperfect reflectivity of the facets. The injection current needed to reach the

threshold gain is called the threshold current(Ith).

3.2.3 The Rate Equations

For a single-mode laser diode, its dynamics follow a set of differential equations called

the rate equations characterized by the photon number P and the electron number

N [14, p 107] :

dP

dt
= GP +Rsp −

P

τp
, (3.3)

dN

dt
=
I

e
−GP − N

τc
. (3.4)
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In Eq. 3.3, the changes in photon count are determined by three terms: the net

increase in photons emitted due to stimulated emissions, the generation of photons

due to spontaneous emissions, and the net loss of photons determined by the lifetime

τp of the photons. In Eq. 3.4, the changes in electron number are also determined

by three terms: the first term gives the number of injected electrons obtained from

dividing the injection current I by the elementary charge e, the second term takes

into account the loss of electrons due to stimulated emissions, and the last term

represents the loss of electrons due to both spontaneous emissions and nonradiative

recombinations with τc as the carrier lifetime. Nonradiative recombinations refer to

the recombinations of the electrons and holes that result in phonon emissions (i.e.

semiconductor crystal lattice vibrations).

We are interested in solving the rate equations with a modulated injection current

in the form of Ib + Im cosωt, where Ib is the DC bias current and Im is the magnitude

of the radio frequency modulation. As a pair of coupled differential equations, the

rate equations can only be solved numerically. However, we can obtain an analytic

solution by making the small signal approximation given that our modulation signal

fulfills the following condition [14, p 110]:

Im � Ib − Ith, (3.5)

where Ith is the threshold current.

When the injection current is modulated, the net rate of stimulated emission per

photon G is no longer linearly dependent on the number of electrons in the active layer

46



as described in Eq. 3.2. The following equation offers a more realistic description:

G = g(N −NT )(1− εNLP ), (3.6)

where εNL is a non-linear gain parameter that is typically ≈ 10−7. This modified

expression reflects the dependency of the gain on both the electron and photon number

during injection current modulation.

With a small sine wave modulation, the rate equations can be linearized and solved

using the small-signal approximation and the Fourier-transform technique to give a

set of general solutions [15, p 84]:

P (t) = 〈P 〉+ Re[∆Peiωmt], (3.7)

N(t) = 〈N〉+ Re[∆Neiωmt]. (3.8)

The number of electrons and photons vary sinusoidally around their mean values

〈N〉 and 〈P 〉 at a frequency equivalent to the modulation frequency ωm. To make

this relationship a little more intuitive, one can take a look again at the rate equa-

tions. The injection current clearly affects the electron number from the second rate

equation. The photon number is related to the injection current through G, which is

related to both P and N according to Eq. 3.6.

Furthermore, given the modulated electron number in Eq. 3.8, the optical fre-

quency ν is also directly modulated[15, p 121]:

ν = 〈ν〉+ Re[∆νeiωmt], (3.9)
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where 2πν = ω. This result follows from the dependence of optical frequency on

the refractive index and the group refractive index. Since the crystal surfaces of the

active layer effectively serve as an optical resonator, the refractive index determines

the possible emission frequencies and it changes rather linearly with electron numbers.

On the other hand, the group refractive index concerns with the spacing between

two adjacent emission frequencies (also called longitudinal mode spacing); it varies

with the non-linear stimulated emission gain, which contributes to the non-linear

modulation response of the optical frequency. [15, p 31-32]

While the electric field might be directly modulated in externally modulated sys-

tems, it is important to realize that the output power rather than the electric field is

modulated during injection current modulation. [16] Therefore in our case,

P ∝ |E(t)|2, (3.10)

where P is again the photon number and E(t) is the electric field of the output

optical wave. When deriving the electric field expressions for the optical sidebands

in Sec. 3.2.6, this relationship will result in a square root for the electric field due to

amplitude modulation.

Eq. 3.7 and Eq. 3.9 show that injection current modulation leads to both amplitude

modulation and frequency modulation. It is in principle possible to predict the relative

amount of AM vs. FM by solving the rate equations, but the diodes are typically not

documented sufficiently for useful calculations. In practice, we can infer their relative

strengths from the modulated sideband intensities.
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3.2.4 The AM Theory

Before deriving the expression for optical sidebands, it is helpful to consider amplitude

modulation and frequency modulation separately.

Consider a carrier wave c(t) with frequency ωc and amplitude Ac such that c(t) =

Ac cos(ωct). The amplitude of the carrier is modulated by the signal s(t) = Am cos(ωmt),

where Am is the amplitude of the modulated signal and ωm is the modulation fre-

quency.

The effect of amplitude modulation is that the carrier amplitude at each moment

is modified by the instantaneous value of the modulated signal. [17, p 94-96] In other

words, the carrier amplitude is no longer constant: it is now Ac + s(t). This new

amplitude leads to a new expression for the modulated carrier wave:

cAM(t) = [Ac + Am cos(ωmt)] cos(ωct). (3.11)

Multiplying out each term within the parenthesis with cos(ωct) and using trigono-

metric identities, Eq. 3.11 can be rewritten as

cAM(t) = Ac cos(ωct) +
Am
2

cos(ωc − ωm)t+
Am
2

cos(ωc + ωm)t. (3.12)

This equation shows that amplitude modulation with a single modulation frequency

results in two sidebands (the second and third term in Eq. 3.12). Their amplitudes

have the same signs and their frequencies differ from the carrier frequency by the

modulation frequency.
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3.2.5 The FM Theory

Frequency modulation is similar to phase modulation because both cause phase

changes in the resulting output. Unlike phase modulation, which directly vary the

phase of the carrier, in frequency modulation the phase change is a result of changes

in the instantaneous frequency of the carrier. Consider the same sinusoidal carrier

signal c(t) from section 3.2.4, and the same modulation signal s(t) except this time

as frequency modulation. The instantaneous phase θFM(t) in frequency modulation

is obtained by taking the integral of the modulation signal:

θFM(t) = ωct+

∫ t

t0

s(t) dt, (3.13)

where the lower integral limit is the time at the beginning of frequency modulation.

Since our modulation signal is a cosine wave, the instantaneous phase can be

solved, and the modulated signal becomes

cFM(t) = Ac cos(ωct+
f

ωm
sinωmt), (3.14)

where f has units of angular frequency.

Unlike the case of amplitude modulation, Eq. 3.14 theoretically contains infinite

sidebands when expanded into a Fourier series. The details of the expansion will soon

be discussed along with injection current modulated sidebands.
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3.2.6 Optical Sidebands

In Sec. 3.2.3 we established that under a small-signal modulation of the injection

current, the output power and frequency respond sinusoidally. If we superpose a DC

bias current Ib with an RF signal Im cosωmt, making sure that Im � Ib−Ith, the AM

and FM theory derived in section 3.2.4 and section 3.2.5 are now ready to be applied.

Take the original electric field with just the bias current to be the carrier. The

carrier can be written in complex exponential form for convenience: E0e
iω0t, where E0

is the carrier amplitude and ω0 is the carrier frequency. Here, the real part corresponds

to the physical electric field. According to Eq. 3.11 and Eq. 3.14, the electric field

resulting from each kind of modulation independently would be

EAM(t) = E0e
iω0t
√

(1 +M cosωmt) (3.15)

and

EFM(t) = E0e
i(ω0t+β sinωmt), (3.16)

respectively, where M is the degree of AM modulation and β is the FM modulation

index. As mentioned before, the square root in Eq. 3.15 results from the output power

instead of the electric field being directly modulated by the injection current.

Fourier expanding the frequency modulated electric field leads to the following
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series[18]:

E0e
i(ω0t+β sinωmt) =J0(β)E0e

iω0t

+ J1(β)E0e
i(ω0t+ωmt) − J1(β)E0e

i(ω0t−ωmt)

+ J2(β)E0e
i(ω0t+2ωmt) + J2(β)E0e

i(ω0t−2ωmt)

+ ...

+ Jl(β)E0e
i(ω0t+lωmt) + (−1)lJl(β)E0e

i(ω0t−lωmt).

(3.17)

Each term in the series contains Jl(β), or the Bessel functions of the first kind. The

Bessel functions are functions of a single variable, in our case the modulation index

β.

In Eq. 3.17, the first line refers to the carrier, the second line contains the first

and minus first sidebands, and so on. Unlike amplitude modulation, sidebands due

to pure frequency modulation are alternately in phase and out of phase.

The amplitudes of the carrier and the sidebands are determined by the Bessel

functions. Fig. 3.4 shows the first three orders of the Bessel functions. As expected,

with no modulation, J0(0) is unity and the carrier wave is at its full amplitude. For

our experiments, we have β < 1 mostly because of the low rf power received by the

laser diode. In this range, the amplitudes of the sidebands increase as β increases.

Higher sidebands are suppressed due to the low amplitudes of the higher order Bessel

functions.

Since modulating the injection current causes both amplitude and frequency mod-

ulation, combining Eq. 3.15 and Eq. 3.16 leads to the general modulated electric
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Figure 3.4: The first three orders of the Bessel functions.

field[16]:

E(t) = E0e
i(ω0t+β sinωmt)

√
1 +M cos(ωmt). (3.18)

This expression shows that the amplitudes of each pair of the frequency modu-

lated sidebands are modified by amplitude modulation. A second order expansion

of Eq. 3.18 gives an approximation of the first few sidebands:

Carrier : E0e
iω0t[J0(β)(1− M2

16
)− J2(β)

M2

16
];

+1 : E0e
i(ω0t+ωmt)[J0(β)

M

4
+ J1(β)(1− M2

32
) + J2(β)

M

4
];

-1 : E0e
i(ω0t−ωmt)[J0(β)

M

4
− J1(β)(1− M2

32
) + J2(β)

M

4
];

+2 : E0e
i(ω0t+2ωmt)[−J0(β)

M2

32
+ J1(β)

M

4
+ J2(β)(1− M2

16
)];

-2 : E0e
i(ω0t−2ωmt)[−J0(β)

M2

32
− J1(β)

M

4
+ J2(β)(1− M2

16
)].

(3.19)
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These expressions are derived in Appendix A.

Further reducing Eq. 3.19 by ignoring terms containing M2 gives a set of simpler

expressions:

Carrier : E0e
iω0tJ0(β);

+1 : E0e
i(ω0t+ωmt)[J0(β)

M

4
+ J1(β) + J2(β)

M

4
];

-1 : E0e
i(ω0t−ωmt)[J0(β)

M

4
− J1(β) + J2(β)

M

4
];

+2 : E0e
i(ω0t+2ωmt)[J1(β)

M

4
+ J2(β)];

-2 : E0e
i(ω0t−2ωmt)[−J1(β)

M

4
+ J2(β)].

(3.20)

This set of approximations differ from the ones derived from directly modulating the

electric field instead of the power by a factor of 1/2 in the terms related to amplitude

modulation.[18]

Since a photodetector measures intensity rather than electric field, the relative

intensity of each sideband can be obtained by taking the absolute value squared of

the respective electric field and dividing by the absolute value squared of the carrier

electric field. Experimental observations of any two sideband intensities relative to

that of the carrier will be sufficient for solving both β and M .

3.3 Experimental Observations

According to Sec. 3.2.6, first sidebands have a frequency of f0 + fm while minus

first sidebands have a frequency of f0 − fm, where f0 is the carrier frequency and

fm is the modulation frequency. Fig. 3.5 shows the transmission peak positions as
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ωm

ωm

−1β α +1 −1γ β +1α −1 γ +1β
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fm + FSR

Figure 3.5: An illustration of sideband positions for different modulation frequen-
cies. α, β, γ denote carrier peaks as we scan the F-P cavity, the distance between
adjacent carriers is the FSR. +1 and -1 are first and minus first sidebands and their
subscripts indicate the corresponding carriers. The sidebands are seperated from the
corresponding carriers by the modulation frequency.

we scan the F-P cavity by more than two FSRs. Notice that when we increase the

modulation frequency by one FSR, some sidebands (+1γ and −1α) are off the screen.

We still see the same sideband pattern because sidebands from other carriers fill in

their positions. This analysis demonstrates that the F-P cavity registers the same

pattern for modulation frequencies that differ by an integer number of the FSR.

Since the first and minus first sidebands are symmetrically spaced with respect

to the carrier, they overlap for fm at integer multiples of 250 MHz if our cavity FSR
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is actually 500 MHz. This allows us to measure the FSR of our cavity by observing

the modulation frequency for which the first and minus first sidebands overlap. In

Fig. 3.6, the first and minus first sidebands overlap exactly for fm = 2750 MHz,

confirming that our FSR is 500 MHz.

Figure 3.6: Sidebands modulated at 2750 MHz. The first and minus first sidebands
coincide at the center between two carrier peaks.

Fig. 3.7 shows another observation that is consistent with theoretical predictions.

We mentioned in Sec. 3.2.4 that injection current modulation results in both AM and

FM. The AM modulation causes uneven power in the first and minus first sidebands,

which is evident in Fig. 3.7. Also note that the power of negative sidebands is always

less than that of positive sidebands according to the expanded expressions for the

sidebands in Sec. 3.2.6.

Now that we know our setup works, recall that our goal is two-fold: we want to
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Figure 3.7: First sidebands produced by direct injection current modulation at 4300
MHz. The bias current is at 25mA and the rf signal generator output is 20dBm.

maximize the modulation frequency and improve modulation response (i.e. higher

sideband powers). We identify general trends in modulation response and examine

the various relevant factors in order to find the optimal condition for our system.

3.3.1 General Decline with Increasing Modulation Frequency

Modulation response generally declines with increasing modulation frequency.[18]

There are two possible factors for this phenomenon. The first one is based on the

inverse relationship between modulation index β and modulation frequency ωm:

β =
2π∆F

ωm
, (3.21)
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where ∆F is the maximum frequency deviation.[19] Note that ωm in the denominator

results from integrating Eq. 3.14. For small β (< 1), higher order Bessel functions

decrease with β (see Fig. 3.4); the sideband powers decrease with the higher order

Bessel functions.

Figure 3.8: The reflected rf power as measured by the crystal detector for 20dBm rf
input power. The -16dBm attenuation due to the directional coupler is accounted for
in the plot.

The second factor is associated with experimental practice. In our current setup,

the rf power can be seriously attenuated at high frequencies because we did not

impedance-match the rf power. In fact, there has been accounts of at least a 50 %

reduction in the rf power received by the laser diodes in similar experiments. [11, 19]

We monitor the rf power reflected off our laser diode with a directional coupler.

The signal is measured by a crystal detector and recorded for select frequencies in

Fig. 3.8. The rf signal input is 20dBm for all the reflected powers recorded in Fig. 3.8.
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Surprisingly, only as much as 10 % of the incident power is reflected back. However,

given the amount of modulation we observe in the sidebands, it is unlikely that all of

the remaining power goes into the laser diode. One way to potentially increase the rf

power received by the laser diode is to increase the incident rf power. Unfortunately,

the rf signal output in our setup cannot exceed 20dBm. For future experiments, it

might be helpful to use an rf generator with higher output power.

Figure 3.9: First sidebands modulation depths at different modulation frequencies for
DC bias at 55mA. We were only able to observe sidebands at modulation frequencies
corresponding to the data points plotted in this figure.

We observe the relative power of the first and minus first sidebands with respect

to the carrier (i.e. the modulation depth) for various modulation frequencies. The

modulation depths for the first sidebands are plotted in Fig. 3.9. Using the expressions

for the carrier, first sidebands, and minus first sidebands from Sec. 3.2.6, we can

calculate the AM and FM modulation indices. The results are plotted in Fig. 3.10.
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Figure 3.10: FM indices(β) and AM indices(M) for modulation frequencies from 15-
6650 MHz. The DC bias current is at 55mA for all data points. Note that missing
data points correspond to β and M ∼ 0 at those modulation frequencies.

In Fig. 3.10 and Fig. 3.9, the peak heights decline with increasing frequency, sup-

porting the discussion above. The exception at around 100 MHz and the dramatic

response at certain frequencies are due to another phenomenon discussed in the fol-

lowing section.

3.3.2 Dramatic Improvements from External Cavity Feed-

back

Because of the constructive feedback provided by the external cavity in an ECDL,

there is a strong correlation between modulation response and the free spectral range

(FSR) of the external cavity.[18–20] More specifically, optimal modulation depth is
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achieved with fm at integer multiples of the external cavity FSR.

This dramatic improvement in modulation response is prominent in Fig. 3.10 and

Fig. 3.9. Although in the previous section we discussed about reduced modulation

responses at higher modulation frequencies, the cavity feedback allows better modu-

lation responses at 2 GHz and at 4.5 GHz than those at sub-FSR frequencies.

Because Fig. 3.10 and Fig. 3.9 are quite noisy, which might be partly because of the

fluctuations in the rf power, we cannot extrapolate from them with much precision

our actual external cavity FSR. Nonetheless, since the modulation responses peak

consistently below the expected frequencies for the FSR at 2.4 GHz, 2.2 GHz is

probably a better estimate.

3.3.3 Bias Current Dependence

There have been several observations of improved modulation response upon de-

creasing the bias current.[11, 19, 20] In some cases, the modulation depths are quite

sensitive to how far the current is above threshold. [11]

There are two possible explanations for this phenomenon. First, when decreasing

the bias current (while still remaining above the threshold current), the fractional

modulation amplitude given the same rf power increases. This leads to an increase

in β, which improves modulation response.

Second, the parasitic capacitance in laser diodes might filter out high frequency

rf signals.[15, p 93-94] As a potential develops between the two doped semiconductor

regions (explained in Sec. 3.2.1), the p− n junction becomes analogous to a parallel

plate capacitor. If we approximate a laser diode as a diode connected in parallel with

a capacitor, the laser diode becomes effectively a low-pass filter. Lowering the DC
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bias current can reduce the parasitic capacitance and allow higher frequency rf signals

to enter the diode, improving the modulation response.

We vary the bias current at fm = 4300 MHz and at fm = 6644 MHz, where

we observed maximum modulation response according to Fig. 3.10. Since our laser

current threshold is 18mA, we start the bias current at 20mA. For fm = 4300 MHz,

Fig. 3.12 and Fig. 3.11 show that modulation response generally decays as we increase

the bias current. There is a local maximum around 55mA for both AM and FM

indices, and the corresponding modulation depth is around 10 %.

At fm = 6644 MHz, Fig. 3.13 and Fig. 3.11 indicate maximum modulation re-

sponse at around 50mA. There is a greater bias current dependence of the AM indices

than the FM indices. While modulation response almost linearly increases with de-

Figure 3.11: Bias current dependence of modulation depth at fm =4300 MHz. Linear
fit slope is attached.
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Figure 3.12: Bias current dependence of modulation indices at fm =4300 MHz.

creasing bias current for fm = 4300 MHz, at fm = 6644 MHz the modulation response

declines both at low and high bias currents. We attempt to explain this difference in

the following section.

3.3.4 Frequency of Oscillation Relaxations

There is an upper limit on modulation frequency for each laser diode. This is de-

termined by the frequency of relaxation oscillations, which is related to how fast the

laser diode can return to its steady-state under current disturbances. In general,

modulation efficiency decreases dramatically as the modulation frequency increases

far above the frequency of relaxation oscillations. [14, p 144]

The frequency of relaxation oscillations in some diode lasers has been documented

to range from 2 to 5 GHz. [14, p 210] In our case, we were not able to observe any
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Figure 3.13: Bias current dependence of modulation indices at fm =6644 MHz.

Figure 3.14: Bias current dependence of modulation depth at fm =6644 MHz.
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sidebands after 6650 MHz. The next external cavity feedback is at least above 8 GHz,

which might exceed the frequency of oscillation relaxations by too much to allow for

any modulation response.

We have mentioned the improved modulation responses with lower bias current.

This improvement is counteracted, however, by the dependence of the frequency of

relaxation oscillations (fr) on the bias current (I). This relationship is expressed in

the following equation:

fr =

√
I/Ith − 1

τcτp
, (3.22)

where Ith is the threshold current, τc and τp are the carrier and photon lifetimes,

respectively.[19]

Eq. 3.22 might explain the difference in the bias current dependence of modulation

responses observed for 4300 MHz and 6644 MHz (compare Fig. 3.11 and Fig. 3.14).

As the bias current decreases, fr also decreases, lowering the the upper limit of the

modulation frequency. Hence we observe a decline in modulation response for 6644

MHz at low bias currents. For bias current at 50mA, we obtain 3 % modulation depth

for the first sidebands at fm =6.6 GHz. Without considering the absolute powers of

the carrier and the sidebands, this seems to be the optimal condition for our system.

3.3.5 Mysterious Sidebands

So far we have examined observations that are consistent with theoretical expecta-

tions. We also encountered a puzzling situation where unexpected sidebands appear

at 0.5fm away from the carrier frequency. These “half sidebands” persist between

fm =4243 MHz and fm =4309 MHz. While the theory only predicts integer side-
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bands, the “half-sidebands” in Fig. 3.15 appear AM and FM modulated.

We also found that at fm =4266 MHz, the diode is destabilized. Perhaps there is a

connection between these two phenomena, but we have not yet found an explanation

for it.

Figure 3.15: Sidebands modulated at 4257 MHz. The dashed lines mark the positions
of the hypothetical “half sidebands”.

While these “half sidebands” are unexpected, they are not serious concerns given

what we need. We have demonstrated that our diode laser can be modulated up to

6.6 GHz and that its relative power with respect to the carrier can be adjusted with

the DC current. The power in the optical sideband is likely enough if we use them

as resonant beams so that the non-resonant (Raman) beams can benefit from the

larger power of the carrier. Hopefully, the detuning generated using injection current

modulation is large enough for Raman transitions.

66



Chapter 4

Conclusion

We have built a laser lock that automates frequency stabilization. According to a

thallium fluoride molecular transition, the system is stable to within 200 kHz over 3

hours. Since the system depends on the stability of the Fabry-Perot cavity, we took

measures to isolate the cavity from acoustic vibrations and pressure and temperature

variations. We showed that our system is resistant to temperature changes below

0.6oC. For usual lab temperature drifts, our system is practically athermal. This

setup is complete and mounted on a 1’ × 2’ mobile breadboard, designed to be

conveniently incorporated into laser systems with fiber-coupled outputs. We have

used this laser lock to successfully stabilize the frequency of our external cavity diode

laser.

For injection current modulation, we have demonstrated that our ECDL can be

most effectively modulated at frequencies around 2.2 GHz, 4.4 GHz, and 6.6 GHz due

to the enhanced external cavity feedback. We observed a strong correlation between

the modulation response and the bias current. At 6.6 GHz, the optimal bias current
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is at 50mA, where we obtain 3 % of the output power in the sideband. Although we

had originally hoped to modulate the laser diode at 9.6 GHz, we believe that a 6.6

GHz detuning could also allow us to implement Raman transitions for the sideband

cooling. Its efficiency of course awaits to be tested on the logic ions.

An immediate next step is to convert both the carrier and the sideband to the

ultraviolet. Celia Ou has designed a frequency conversion setup and it is still in the

construction stage. After frequency conversion, the carrier and the sideband need

to be modulated by acousto-optic modulators to generate a total of 6 laser beams.

The carrier will be modulated to produce the two Raman beams separated by around

1.25 GHz. The sideband will be the source of the Doppler beams, repump laser,

and detection laser. Once the logic ions are trapped, these six beams can potentially

accomplish the second step we mentioned in Chapter 1, preparing the logic ions for

manipulating the spectroscopy ions.
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Appendix A

Optical Sideband Derivations

The goal is to expand

E(t) = E0e
i(ω0t+β sinωmt)

√
1 +M cos(ωmt). (A.1)

The following expansions are taken from ref. [21]:

(1 + x)α = 1 + αx+
α(α− 1)

2!
x2 +

α(α− 1)(α− 2)

3!
x3 + ...+

(
α

n

)
xn, (A.2)

where the interval of convergence is −1 < x < 1.

cos2nx =
1

22n−1

n−1∑
k=0

(
2n

k

)
cos(2n− 2k)x+

(
2n

n

)
1

22n
(A.3)

and

cos2n−1x =
1

22n−2

n−1∑
k=0

(
2n− 1

k

)
cos (2n− 2k − 1)x. (A.4)

Since we are modulating the injection current with a small signal, assume |M | < 1
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and the square root term in Eq. A.1 can be rewritten as

1 +
1

2
M cos(ωmt)−

1

8
M2cos2(ωmt) +

1

16
M3cos3(ωmt) + ...+

∞∑
n

(
1
2

n

)
Mncosn(ωmt).

(A.5)

Expanding the first few terms of Eq. A.5 using Eq. A.3 and Eq. A.4 leads to

1 +
1

2
M cos(ωmt)

− 1

16
M2 − 1

16
M2 cos(2ωmt)

+
1

64
M3 cos(3ωmt) +

3

64
M3 cos(ωmt)

+ ...

(A.6)

For convenience, cosines can also be written in complex exponential form so that the

first three lines of Eq. A.6 become

1 +
1

4
Meiωmt +

1

4
Me−iωmt

− 1

16
M2 − 1

32
M2e2iωmt − 1

32
M2e−2iωmt

+
1

128
M3e3iωmt +

1

128
M3e−3iωmt +

3

128
M3eiωmt +

3

128
M3e−iωmt.

(A.7)
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Recall from Chapter 3 that using Fourier expansion,

ei(ω0t+β sinωmt) = J0(β)E0e
iω0t

+ J1(β)E0e
i(ω0t+ωmt) − J1(β)E0e

i(ω0t−ωmt)

+ J2(β)E0e
i(ω0t+2ωmt) + J2(β)E0e

i(ω0t−2ωmt)

+ ...

+ Jl(β)E0e
i(ω0t+lωmt) + (−1)lJl(β)E0e

i(ω0t−lωmt),

(A.8)

where Jl(β) is the lth order Bessel function of the first kind.

Combining Eq. A.7 and Eq. A.8 and neglecting all terms smaller than M2 gives

the second order expansion of the first few sidebands:

Carrier : E0e
iω0t[J0(β)(1− M2

16
)− J2(β)

M2

16
];

+1 : E0e
i(ω0t+ωmt)[J0(β)

M

4
+ J1(β)(1− M2

32
) + J2(β)

M

4
];

-1 : E0e
i(ω0t−ωmt)[J0(β)

M

4
− J1(β)(1− M2

32
) + J2(β)

M

4
];

+2 : E0e
i(ω0t+2ωmt)[−J0(β)

M2

32
+ J1(β)

M

4
+ J2(β)(1− M2

16
)];

-2 : E0e
i(ω0t−2ωmt)[−J0(β)

M2

32
− J1(β)

M

4
+ J2(β)(1− M2

16
)].

(A.9)
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Appendix B

Allan Deviation

The following is the Mathematica code used to calculate Allan deviations.

channelA is the list containing the frequency measurements over the 3 hours.

Our goal is to obtain a list of Allan deviations corresponding to each time scale; we

call this list allanDev.

The Partition[list, n] function in Mathematica partitions the given list into nonover-

lapping sublists of length n. We name the collection of sublists resulting from the

partition of channelA bins.
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The loop successively partitions channelA into bins containing less and less data

points. At each step, the loop calculates the Allan deviation with the Sqrt[...] term.

The loop starts from having 1 bin and stops at a bin number corresponding to 2

data points in each bin. I use the Join[...] function to time-stamp each calculated

Allan deviation using the fact that each measurement took 2 seconds. The resulting

allanDev is a list containing Allan deviations(MHz) vs. time(s).
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