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Abstract

Attempts at quantum theories of gravity as well as tantalizing astrophysics
results suggest a need to examine the stability of fundamental constants with
respect to position and time. We have chosen to investigate time-variation
of the electron-proton mass ratio (µ), as this dimensionless number is crit-
ical to our understanding of fundamental interactions. We plan to observe
shifts in certain energy levels sensitive to temporal changes of µ in a molecular
ion, possibly 16O+

2 , via quantum logic spectroscopy. This technique requires
co-trapping the molecular ion with an atomic ion, specifically 9Be+ in our pro-
posed experiment. Trapping of the ions gives us very long interrogation time
and thus higher precision through the frequency–time uncertainty relation.
Quantum logic spectroscopy allows us to sympathetically cool the molecular
ion with the atomic ion as well as to prepare and detect its internal states,
which are more sensitive to changes of µ. Our proposed experiment, there-
fore, allows us to not only extract dµ/dt from changes in the frequencies of
certain transitions in the molecular ion but also to develop a high-precision
spectroscopy method using molecules.

This thesis focuses on building the linear Paul trap system that will co-trap
the two ions in an approximately harmonic potential well. We have designed
and constructed the trap electrodes and are in the process of putting the rest
of the system together. We also provide some preliminary designs, which
include a procedure and instrumentation to create ultra-high vacuum, circuits
for the signals to the trap electrodes, and optics for imaging the trapped ions.
Some of these designs are ready for actual construction and assembling of
the apparatus; others, for which we have offered our thoughts and questions,
need more polishing. Besides designs for the hardware, we also present the
motivations behind our experimental goals and the methods to achieve them
so that future generations of thesis writers can keep their eyes on the prize
and continue to work towards it.
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Chapter 1

The Journey Begins

“I am going on an adventure!” — Bilbo Baggins, The Hobbit

This thesis is the beginning of a long and difficult but also exciting and

rewarding journey. Although the eighty-or-so pages that you are about to read

are a somewhat impersonal, academic and technical account of the first few

episodes of this adventure, in this introduction I am going to speak to you,

the reader, directly, as if I am talking to you face-to-face and waving my arms.

This is the only way I can think of to sell this adventurous scheme to you

and entice you to read the rest of my thesis. Moreover, since we are probing

fundamental laws of physics here, the final destination of our journey is too

attractive to hide behind the veil of third-person pronouns. Therefore, with

the most animated language and impassioned vocabulary, I introduce to you

our proposed journey and the role I have played in it.

We begin our journey with an end in mind, which is to answer the ques-

tion if the electron-proton mass ratio, µ for short, varies with time. Consid-
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ering that both of those masses are “fundamental constants”, it is a rather

peculiar question to ask. We have, however, ample reasons to suspect that

“fundamental constants” do change as functions of position and time. Certain

unified theories of fundamental interactions require “fundamental constants”

to change. Previous research efforts have also collected data that open seri-

ous questions on the stability of µ. Sections 4.1 and 4.2 will be able tell you

all about these reasons that motivate us to probe the time-dependence of µ.

Furthermore, the two possible answers to our question, “yes” and “maybe”,

are both coveted treasures. If our experiment eventually allows us to see some

evidence of time-variation in the electron-to-proton mass ratio, then we will

confirm some of the theories that predict it; on the other hand, if we manage

to further limit the size of the variation, we will constrain speculative theories.

Either way, this journey will take us to an appealing final destination.

Furthermore, we think we know the way to our final destination and the

view on the road is not going to be bad at all. We know that µ determines

the sizes of rovibrational transitions in diatomic molecules and shifts in their

frequencies over time are manifestations of the time-variations of µ. Some of

these transitions are particularly sensitive, producing larger frequency shifts

that are easier to measure very precisely. Also, the techniques for measuring

frequencies of transitions in atoms and molecules, also known as high-precision

frequency metrology, have been developed by some of the brightest minds in

physics for many years. We are not re-inventing the wheel here, but to get to

our final destination, we need to do it better. The method we propose here

is a recent technique, quantum logic spectroscopy, adopted from the land of
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quantum information processing, which performs the high-precision frequency

metrology we want to do with two ions, one atomic and the other molecular.

This new technique will allow us to prepare and detect the internal states of

the molecular ion, which may be more sensitive to changes in µ. Section 4.4

contains a detailed account on our experimental method. As promised earlier,

the view on the road itself is an attraction of the journey; even though it

may take years for us to collect data on the time-variation of µ, we will have

developed and polished a new and presumably better spectroscopy method

with diatomic molecular ions, which has never been done before.

Having full confidence in this adventure being a rewarding one, we began to

traverse the first few miles of the journey. This thesis is a part of the efforts to

put together the apparatus that will perform the spectroscopy experiment. It

involves designing and constructing a linear Paul trap system that will contain

the two ions we hope to use for high-precision frequency metrology. A linear

Paul trap is a device that confines charged particles, the ions for spectroscopy

in our case, using an oscillating electric field. Trapping the ions gives us

very long interrogation time and thus higher precision through the frequency-

time uncertainty relation. Chapter 2 focuses exclusively on the trap we have

designed and built. Chapter 3 will present preliminary designs, ideas, and

unanswered questions on the rest of the Paul trap system yet to be constructed.

Given the arbitrary time-frame of a senior thesis, however, this is as far as I

could take it.

Nevertheless, I have written the following chapters with the next generation

of adventurers in mind and with the hope that they will help them a little
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further beyond the due date of my thesis. In other words, instead of simply

being an account of what I have done, the following chapters are supposed

to be read like a guidebook, or perhaps an incomplete but still somewhat

informative map. Chapter 2 describes the theory of the linear Paul trap and

design considerations we have had while constructing it; Section 2.4 suggests

a geometric factor of the trap that will be interesting to characterize once

the entire system is up and running. Chapter 3 contains designs of other

components of the Paul trap systems. Some of these designs are ready-to-use

“recipes”; others need to have more thinking put into them. Chapter 3 also

include what I believe to be the next steps to take and some potential potholes

on the road. Additionally, if the future adventurers ever need a reminder of

our final destination and its many attractions or desire the “big picture” of this

long and strenuous road trip, they should hopefully find Chapter 4 a useful

read or at least a helpful pointer to relevant articles in the existing literature.

Finally, apart from the appendices, I have included a handful of Mathematica

notebooks1 that will perform certain calculations in Chapters 2 and 3; they

are meant to save the reader the trouble to reconstruct them from my written

words and use them to help design pieces of apparatus yet to be built.

Now with this “guidebook” in hand, it is time to buckle up and let the

journey begin!

1One of the notebooks that calculates the geometric parameters of the helical resonator
is included in Appendix B. The others are in the disc attached to this thesis. One does not
have to refer to the notebooks, with the exception of the one in Appendix B, in order to
follow this thesis.
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Chapter 2

Linear Paul Trap: Theory,

Design and Construction

An ideal Paul trap generates an oscillating electric field to confine charged

particles. The average force on a charged particle in such a field, taken over

many oscillations, can be convergent towards the center of the trap, which

coincides with the point of the lowest average potential, leading to confinement;

in other cases, it is divergent, leading to the loss of the particle. With the

appropriate amplitude and frequency, the oscillating potential can result in a

time-averaged convergent force towards the trap center in two out of the three

spatial dimensions. A DC potential can then be added to provide confinement

in the third dimension.

Wolfgang Paul, after whom this method of ion trapping is named, demon-

strated this dynamic stabilization with an analogous mechanical device shaped

like a saddle [1]. If one simply places a ball near the saddle point of the device,
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it will roll off the surface. If the device is rotating at an appropriate frequency

around the normal axis through the saddle point, however, the ball will stay

on the surface while making small oscillations around the axis of rotation with

a frequency smaller than that of the saddle’s rotation. There is an upper and

a lower bound to the range of frequencies that will allow the ball to stay on the

saddle. Besides providing this intuitive explanation, this chapter explains the

theory behind the linear Paul trap in mathematical details1. After delineat-

ing the basic theory, it will discuss the design considerations as consequences

of our mathematical model. Finally, it will present the specifications of the

actual trap we have constructed.

2.1 Linear Paul Trap Theory

We begin examining the theory of ion trapping by assuming some kind of ide-

alized linear Paul trap. An ideal linear Paul trap generates a potential Φ that

takes the form of Φ = Ax2 + By2 + Cz2. It is able to do so by having four

infinitely long rod electrodes and two endcap electrodes (Figure 2.1). The

cross-section of the rod electrodes in the xy-plan is shaped exactly like the

equipotential surfaces of the quadrupole field in the same plane (Figure 2.1

(a)). The endcap electrodes are tapered so that they come close to the center of

the trap (Figure 2.1 (b)). By applying an oscillating radio frequency (RF) po-

tential to the four rod electrodes and a DC potential to the endcap electrodes,

one can generate a cylindrically symmetric (thus linear in the sense that the

1For more detailed theoretical treatments of this subject, see refs [1], [2], and [3] on
which we have based all of our theoretical discussions in this chapter, with the exception of
Section 2.2.1.
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field is not oscillating on the z-axis) oscillating field in which the RF potential

provides the radial confinement (confinement in the xy-plane) of the particle

while the DC potential takes care of the axial confinement (confinement in the

z-axis).
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(a) Rod electrodes. Endcap electrodes are not shown in this diagram for clarity.

(b) Endcap electrodes, seen as a cross-section in the xz-plane. They are colored
grey.

Figure 2.1: Cartoons of electrodes for an ideal Paul trap. The electrodes are
shaped as such to generate the ideal quadrupole potential. For an ideal linear
Paul trap, the cross-section of the rod electrodes in the xy-plane should look
like that of an asymptotic cone [2].

It is easy to see that in order to satisfy the Laplacian ∇2Φ = 0, it must

be true that A+B +C = 0. Subsequently, we can derive that the potentials,

Φrod and Φend, generated by the rod electrode and the endcap electrodes re-
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spectively [2]. Given that a RF potential V0 cos Ωt is applied to two of the rod

electrodes while the other two are held at RF ground, and the DC potential

applied to the endcap electrodes is U0, we have

Φrod =
V0

2
cos Ωt

(
1 +

x2 − y2

r2
0

)
(2.1)

and

Φend =
U0

z2
0

[z2 − 1

2
(x2 + y2)]. (2.2)

Consequently, the combined potential Φ inside the ideal linear Paul trap is just

the superposition of Φrod and Φend. With equations 2.1 and 2.2, we are now

ready to obtain the classical equations of motion of charged particles inside

this potential.

2.1.1 The Classical Picture: Equations of Motion

Applying Newton’s Second Law and given that m is the mass of the particle

and Q its charge, in the z-direction, we simply have

d2z

dt2
m = −2QU0

z2
0

z, (2.3)

which is, with an appropriate sign for U0, the equation of motion for simple

harmonic motion. In other words, confinement on the z-axis depends only on

the choice of sign for the DC potential applied to the endcap electrodes; the

angular frequency of oscillation in the axial direction is therefore ωz =
√

2QU0

z20m
.
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Similarly, the equation of motion in the x-direction is

d2x

dt2
m = −Q

(
V0

r2
0

cos Ωt− U0

z2
0

)
x. (2.4)

Simple algebraic manipulations turns equation 2.4 into the canonical form of

Mathieu’s equations with parameters (ax, qx), which is

d2x

dξ2
+ (ax − 2qx cos 2ξ)x = 0

where

ξ =
Ωt

2
, ax = − 4QU0

Ω2mz2
0

, and qx = − 2QV0

Ω2mr2
0

. (2.5)

Solutions to the Mathieu’s equation are standard; only certain combina-

tions of values for the parameters (ax, qx) will lead to solutions that correspond

to confinement of the particle in the x direction. The situation is similar in

the y direction with ay = ax and qy = −qx. As a result, requiring confinement

in both x- and y-directions limit the set of values for (ai, qi) (i = 1, 2 for x

and y respectively) to a bounded region, known as the stability region, in a-q

space.

2.1.2 Solutions to Mathieu’s Equation and the Stability

Region in a-q Space

In order to find this stability region, we have to first look at the general

solution to Mathieu’s equation. According to Floquet’s theorem, solutions to

the equation are linear combinations of two functions, u1(ξ) = eµξφ(ξ) and
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u2(ξ) = e−µξφ(−ξ), where φ is a periodic function, and µ = α + βi, where α

and β are Re(µ) and Im(µ) respectively. This is true if and only if α 6= 0 or

α = 0 and β is not an integer. Otherwise, another solution has to be found to

combine with one of the Floquet solutions [2]. If α 6= 0, however, either u1 or

u2 blows up as ξ → ±∞. In other words, in order to have solutions that stay

bounded with the passing of time (also known as stable solutions), α must

be zero. On the other hand, given that α = 0, if β is an integer, the general

solution to the equation will have to be a combination of a periodic function

and a second solution that grows linearly as ξ → ∞, which also means that

the solution is unstable. Consequently, the only way to obtain stable solutions

and thus achieve confinement of the particle in one dimension is to set α to

zero and let β be a real number that is not an integer.

The fact that β cannot be an integer gives rise to regions of stability and

instability in a-q space. Being a non-integer real number simply means that,

in an arbitrary dimension, β is the sum of an integer and some number βi that

ranges from zero to one. βi = 1 or 0, therefore, is the boundary condition

that separates the stable solutions from the unstable ones; all we need now is

to obtain a function that relate ai and qi to βi. Fortunately, substituting the

Fourier series of the Floquet solution [4],

u(ξ) =
∞∑

n=−∞

c2ne
i(βi+2n),

back into Mathieu’s equation gives

qic2n+2 − (ai − (βi + 2n)2)c2n + qic2n−2 = 0. (2.6)
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Equation 2.6 is the last theoretical link to determining the boundaries of

the stability regions. By setting βi to zero and one, we can obtain a series of

a′is as functions of qi for n = 0, 1, 2, 3... These functions divide a-q space into

regions of stability and instability (Figure 2.2).

Figure 2.2: Stability regions (shaded) in an arbitrary dimension. The bound-
aries of these regions are functions of ai in terms qi. Setting βi to 0 gives ai,2n
and bi,2n+2 while setting βi to 1 gives ai,2n+1 and bi,2n+1.

Finally, in order to produce confinement in both x- and y-dimensions, the

set of required values for (ai, qi) must make up the region where the stability

regions in the x-dimension overlap with those in the y-dimension. Finding the

second set of stability regions in another dimension is easy after we have done

so for an arbitrary dimension; since ax = ay while qx = −qy, the stability

regions for y are symmetric to those for x about the q-axis. For the purpose

of constructing a linear Paul trap, we are only interested in the region where
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both ai and qi are smaller than one [2]; Figure 2.3 shows the region of interest.

Figure 2.3: The stability region of interest for confinement in both x- and
y-dimensions

In short, only combinations of (ai, qi) that are within the shaded region

can lead to confinement of the particle on both x and y-axes. As ai and qi

are themselves related to physical properties of the trap, such as its geometry

and the RF potential, by equation 2.5, they are crucial parameters to consider

during the actual design and engineering of the trap. Typically, traps are built

such that a < q2 � 1 to ensure tighter confinement.

That being said, since the parameters ai and qi are themselves mathemati-

cal constructions, it is difficult to immediately visualize how a particular choice

of (ai, qi) dictates the physical properties of the trap and its ability to trap a

certain particle. The following section offers alternative ways to model condi-
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tions leading to confinement of the particles. These more intuitive descriptions

of confinement conditions eventually provide valuable design considerations for

building a physical trap.

2.2 Design Considerations

When it comes to designing an actual trap for an experiment, we already know

the masses and charge of the particles we want to trap. In fact, as mentioned

in Chapter 1, we have chosen to trap 9Be+ and a diatomic molecular ion

with very specific purposes in mind. Therefore, the first criterion for choosing

the physical parameters of the trap is that they should enable it to confine

both mass-charge combinations. In order to aid the process of selecting those

physical parameters, the stability region in Figure 2.3 is first transformed into

mass-charge (m-Q) space to represent a range of charge and mass combinations

that an imaginary ideal linear Paul trap can confine.

2.2.1 Stability in m-Q space

Similar to defining the stability region in a-q space, we need to find functions

of m in terms of Q at the boundary condition βi = 0 or 1. In the limit of

q2
x � 1,2 expanding from equation 2.6, the leading terms of the power series,

up to second order [4], for the two boundaries in Figure 2.3, ax0 and bx1, are

ax0(qx) = −1

2
q2
x (2.7)

2In most real linear Paul traps, q2x is much smaller than 1 so as to minimize the micro-
motion of the trapped ion [2]. See Section 2.2.2 for more details.
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and

bx1(qx) = 1− qx −
1

8
q2
x. (2.8)

From equation 2.5, we have ax in terms of qx

ax =
2U0r

2
0

V0z2
0

qx (2.9)

and m as a function of Q

m(Q) = − 2V0

Ω2r2
0qx

Q. (2.10)

If we replace the left-hand side in equations 2.7 and 2.8 with equation 2.9,

we can solve for qx in terms of r0, z0, U0, V0 and Ω. In other words, given

the geometry of the trap, the RF and DC inputs, we can find m(Q) at β = 0

and β = 1 by solving for qx in equations 2.7 and 2.8. Since equations 2.7

and 2.8 are both quadratic, there will be four solutions for qx, providing four

functions of m in terms of Q from equation 2.10. These functions, plotted

in m-Q space in Figure 2.4, are the boundaries (one of the boundaries is the

vertical axis for qx = 0) for the stability regions in the x-dimension. By

superimposing the same plot for the y-dimension, the overlap of the two plot

(shaded in Figure 2.4) gives the set of mass-charge combinations that a trap

with a particular geometry, RF and DC potentials is able to confine.

A plot such as the one in Figure 2.4 comes in really handy when one wants

to define the trapping capacity of a specific trap, i.e. the combinations of mass

and charge it can actually trap. For instance, a vertical line in Figure 2.4 cuts
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Figure 2.4: The stability region in m-Q space for confinement in both x- and
y-dimensions, plotted for r0 = 1.25 mm, z0 = 1.5 mm, V0 = 100 V, U0 = 1
V, and Ω = 10 MHz (this is the configuration for the trap we have designed).
The two shaded regions represent the set of mass and charge combinations this
particular trap can confine. The vertical line intersect the boundaries of one
of the shaded regions at m = 3.44 u and m = 113 u, which give the trapping
capacity of the trap, i.e. the range of singly charged masses it can confine.

though one shaded region of stability at one unit charge. Its two intersections

with the two boundaries give the maximum and minimum masses that the trap

is capable of stabilizing, given that the ion is singly charged; anything lighter

or heavier will simply fall out of the trap according to this model. Table 2.1

lists the trapping capacities of three hypothetical traps at different RF and

DC inputs.
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Trap Geometric parameters V0, U0, Ω Trap Capacity (ax, qx)
A r0 = 0.1 mm V0 = 250 V Mmin = 5.65 u (0.018, -0.23)

z0 = 0.1 mm U0 = 10 V Mmax = 33.9 u for 24Mg+

Ω = 150 MHz
B r0 = 0.769 mm V0 = 400 V Mmin = 22.4 u (0.00019, -0.10)

z0 = 1.25 mm U0 = 10 V Mmax = 541.4 u for 199Hg+

Ω = 12.7 MHz
C r0 = 1.25 mm V0 = 100 V Mmin = 3.44 u (0.0048, -0.35)

z0 = 1.50 mm U0 = 1 V Mmax = 113 u for 9Be+

Ω = 10 MHz

Table 2.1: This table summarizes the trapping capacities of three hypothetical
traps at three different sets of DC and RF potentials. Here u is the atomic
mass unit. Traps A and B are model after those used in [5] and [6] respectively
and trap C is our own trap. The values of (ax, qx) are calculated for the ions
that those trap were designed to confine, in order to show that they all function
well within the approximation we have used to derive Figure 2.4. This table
serves to verify our understanding of the theory and also demonstrates that
more than one trap design will enable us to trap co-trap 9Be+ and a diatomic
ion that is not too much heavier than it.

It is apparent from table 2.1 that more than one trap design will enable us

to co-trap 9Be+ and a diatomic ion that is not too much heavier than it3. But

we also have other considerations that limit the choices of trap parameters.

The angular frequencies of oscillations of the trapped ion as well as the “po-

tential depth” or “pseudopotential” in which it is confined are crucial aspects

of the trap’s physical properties. In conjunction with the m-Q stability region,

we therefore also need to examine our requirements for trap frequencies and

potential depths and take them into consideration.

3O+
2 is a possible candidate as a co-trapped ion. See 4.3 for details on the choice molecular

ion to be co-trapped.
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2.2.2 Pseudopotentials and Trap Frequencies

The pseudopotential model is one in which we approximate the time-dependent

potential generated by the trap electrodes to one that is time-independent and

quadratic, similar to that of a harmonic oscillator. With this model, we can

easily obtain the angular frequencies at which a single trapped ion is oscillating

in both the radial (the xy-plane) and axial (the z-axis) directions.

This approximation is only valid under the assumption that Ω is sufficiently

large in the limit of ai, q
2
i � 1. Under this assumption, the motion of the

trapped ion projected into the radial or the axial direction is a secular motion

at a frequency much lower than Ω, superimposed with driven excursions at the

much higher RF frequency of Ω. Since the amplitude of the driven excursions

are a factor of qx
2

smaller than that of the secular motion, the driven excursions

are known as the micromotion. In most cases, the micromotion is negligible

due to its high frequency and small amplitude; the trajectory of the trapped

ion is therefore approximated to the secular motion [3].

Consequently, considering only the RF potential applied to the rod elec-

trodes, mass m with charge Q moves in an effectively harmonic pseudopoten-

tial4

Φ =
QV 2

0

4mΩ2r4
0

(x2 + y2) =
m

2Q
ω2
r(x

2 + y2) (2.11)

where

ωr =
QV0√
2mΩr2

0

. (2.12)

4The equations given here assumes that the electrodes used for the trap are ideal. A
geometric factor can be incorporated in these equations to correct for the “non-idealness”
of the potential. See Section 2.4.
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Similarly, in the z- or axial direction, the potential (not a pseudopotential

as we can see that equation 2.2 already fits the bill without any approximation)

created by the static DC potential applied to the endcap electrodes is

φs =
m

2Q
ω2
z [z

2 − 1

2
(x2 + y2)] (2.13)

where

ωz =

√
2QU0

mz2
0

. (2.14)

The addition of the static pseudopotential weakens the pseudopotential

generated by the rod electrodes in the radial plane so that it becomes

φr =
m

2Q
(ω2

r −
1

2
ω2
z)(x

2 + y2). (2.15)

In other words, the angular frequency in the radial direction is actually

ω′r =

√
ω2
r −

1

2
ω2
z . (2.16)

For all practical purposes, equations 2.16 and 2.14 give the angular frequencies

of oscillations in the radial and axial directions respectively and define the

motions of trapped ions.

Using equation 2.15 and 2.13, we can also estimate the potential depth,

i.e. the potential difference between the center of the trap and the edge of

the trap. Here we define the edge of the trap as just outside the surface of

the electrodes. As a result, in the radial direction potential depth is just the
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difference between φr at (0, 0) and that at, say, (0, r0), which is

Dr =
QV 2

0

4mΩ2r2
0

− U0r
2
0

2z2
0

. (2.17)

Similarly, it is not difficult to derive from equation 2.13 or just argue intuitively

that the potential depth in the axial direction is U0.

After establishing the pseudopotential approximation, we now have all the

theoretical constructions needed to make a summary of the conditions, besides

that it should be able to confine 9Be+ and another diatomic molecular ion

not too much heavier than 9Be+, that have to be met by the geometric and

electrical parameters of the trap.

• Ω must be large so that the magnitudes of qx and qy are small enough

for the pseudopotential approximation to be valid.

• Since the secular frequencies determines the time constants at which any

external agent interact with the trapped ion, they set the upper limit of

the precision at which measurements can be made. Also, electronic noise

scales 1/f . Hence, in general, we need to maximize these frequencies.

• The potential depth needs to be large as a deeper pseudopotential well

usually corresponds to a “tighter” trap that is less likely to lose the

ion. That means, from 2.17, r0 and Ω (hence the kinetic energy of the

trapped ion) need to be relatively small while V0 needs to be relatively

large. Additionally, U0 cannot be a large voltage compared to V0 if r0

and z0 are similar in their order of magnitude.

21



• Finally, from a more practical perspective, r0 and z0 cannot be so small

that they cannot be machined with high precision by available methods

of fabrication. We should also design the geometry of the trap electrodes

to allow as much optical control as possible.

The points listed in the summary above essentially demonstrate why it is

important to consider the pseudopotential approximation of the ideal Paul trap

although the solution to the Mathieus equation provides sufficient conditions

for achieving confinement of the ions. For instance, there is a qualitative

set of upper and lower limits for Ω. It needs to be large enough for the

pseudopotential approximation to be valid; but it cannot not be too large as

a very large Ω will result in a high kinetic energy for the trapped ion and

a corresponding need for a high RF potential in order to trap the ions in a

deep pseudopotential well. A similar argument also applies to U0—it cannot

be so large that it significantly compromises the radial trapping frequency

and potential depth while it has to be large enough to provide secure axial

confinement. With all these considerations in mind, for trapping 9Be+ we

have calculated the trap frequencies and radial potential depths for two of the

same virtual traps in table 2.1 and the results are presented in table 2.2.

Essentially, the numbers in table 2.2 demonstrate some of the trade-offs we

need to consider when designing the trap. In general, smaller traps tend to

have higher trapping frequencies and radial potential depths for the same elec-

trical inputs; but they may require more sophisticated fabrication techniques

or tools that are not readily available. On the other hand, for the same trap,

having a lower the RF frequency means that the same trap frequencies and
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V0, U0, Ω Trap B Trap C
V0 = 200 V νz = 0.589 MHz νz = 0.491 MHz
U0 = 1 V ν ′r = 3.24 MHz ν ′r = 1.21 MHz
Ω = 20 MHz Dr = 22.6 V Dr = 4.00 V
V0 = 500 V νz = 1.10 MHz
U0 = 5 V - ν ′r = 3.04 MHz
Ω = 20 MHz Dr = 25.4 V
V0 = 100 V νz = 0.491 MHz
U0 = 1 V - ν ′r = 1.21 MHz
Ω = 10 MHz Dr = 4.00 V

Table 2.2: This table summarizes the trapping frequencies (reported in Hz and
thus the symbol ν is used) and the radial potential depths of two hypothetical
traps for a 9Be+ ion at three different sets of DC and RF potentials. For trap
B, r0 = 0.769 mm and z0 = 1.25 mm. Similarly for trap C, r0 = 1.25 mm,
z0 = 1.5 mm. For two of the three combinations of DC and RF potentials, Trap
B is unable to confine 9Be+. Calculations are not done for Trap A because it
was designed for RF signals with much higher frequencies.

potential depth can be achieved with a lower peak-to-peak voltage, although it

also further compromises the pseudopotential approximation. Finally, for the

same RF frequency and trap geometry, a higher V0 is always more desirably

provided that we can build a RF resonator that has a sufficiently high Q factor

(see Section 3.2 for details). In short, we have now considered the ability of the

trap to confine certain mass-charge combinations as well as all the players in

the peusdopotential approximation; we are now ready to pinpoint a particular

design to suit our purpose for co-trapping 9Be+ with another molecular ion.

2.3 Construction of the Trap

Like the ideal Paul trap in Figure 2.1, our design of the trap consists of four

electrodes, machined out of oxygen-free high conductivity (OFHC) copper,
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around the z-axis of the trap as shown in Figure 2.5(a) (drawings of the final

machined design are in Appendix A). But unlike the ideal trap, the electrodes

do not have hyperbolic surfaces and the endcap electrodes are replaced by

two of the electrodes not adjacent to each other being segmented in to five

sections. The segmented electrodes have only DC voltages applied to them,

dividing the center of the trap into two trapping regions (the three regions

in between electrode pairs 2 and 4) in which the ions can sit and providing a

gradient of DC voltages that supply the axial confinement of ions5. The un-

segmented electrodes have only the RF voltage applied to them. Held together

by insulating parts made of Macor, the four electrodes generate a potential

that approximates that of an ideal Paul trap.

From the discussion in Section 2.2, we can surmise that generally smaller

traps gives a tighter confinement, holding other conditions constant. Given

that the tolerance our fabrication method can achieve here at the College is

about one thousandth of an inch and our allowance of machining error about

2%, the smallest r0 and z0
6 that we can confidently machine are in the order of

millimeters. Therefore, we have chosen r0 to be 1.25 mm and z0 to be 1.5 mm,

which makes the trap easy enough to machine while also robust to drifts in

RF voltage applied to the RF electrodes (more on this subject later).

All electrodes are shaped like blades (Figure 2.5(b) and (c)), with the

edges closest to the trap center tapered down to rounded tips with radius of

5With this DC electrode assembly, we can adjust the potential of each electrode indi-
vidually. A highest-middle-low-middle-highest potential configuration will give us a single
potential well for confinement. A high-low-high-low-high potential configuration will give
us a double-well.

6r0 is now defined as the perpendicular distance from the tip of the electrode to the z-axis
of the trap. z0 is half the width of electrodes 2, 3, and 4, as indicated in Figure 2.5(b).
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Figure 2.5: The assembly of electrodes of the actual linear Paul trap we have
machined.

curvature rt (similarly shaped electrodes are also used in [7]). Although the

electrodes do not have hyperbolic surfaces, rt is carefully chosen to match the

radius of curvature of the equipotential surface at the electrode. We have also

calculated that the angle θ needs to be 60 degrees to allow maximum solid

angle for optical access given other physical parameters of the electrodes. We

have chosen this particular shape for the electrodes for the ease of machining

and assembling while keeping the shape of the electrodes approximate to that
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of an ideal trap, at least from the trapped ions’ perspective.

The assembly of electrodes shown in Figure 2.5 provide the oscillating field

for confining the ions in the radial direction and a DC gradient in the axial

direction. We also plan to use the the pre-drilled holes on the Macor end

pieces (see Figure 2.5(a)) for compensation electrodes that will provide two

additional degrees of freedom to “nudge” the ions around in the trap. Those

electrodes will look similar to those in [7] and will have DC voltages applied to

them, which can be adjusted to shift the location of minimum potential and

ensure that it coincides with the geometric center of the trap. In this way, the

compensation electrodes and the segmented DC electrodes together provide

three independent axes in which a trapped ion can be centered using a DC

potential.

With easily accessible DC voltage, RF voltage and frequency, the geometry

of our trap should allow robust co-trapping of 9Be+ with another diatomic

molecule in the same potential well. For instance, if the applied RF signal

has peak-to-peak voltage 100 V and frequency 10 MHz while the DC voltage

applied to electrodes 2 and 4 exceeds that of electrode 3 by 1 V, we can

confine both 9Be+ and 16O+, a potential candidate for our diatomic molecular

ion. Their (ax, qx) values will be (0.0048, -0.35) and (0.0027, 0.20) respectively,

both of which fall within the pseudopotential approximation. For 9Be+, the

radial and axial trapping frequencies will be about 1.21 MHz and 0.491 MHz

respectively; the radio potential depth is about 8 V. Our design of electrodes

are robust enough that moderate drifting in the RF voltage and frequency

applied to the electrodes will not result in loss of trapped ions or breaking
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down of the pseudopotential approximation. Therefore, the RF signal we

need to reliably stabilize 9Be+ and another diatomic ion not too much heavier

does not have stringent or unrealistic requirements for the power supplies for

the electrodes.

Finally, we have also designed our trap to be ultrahigh vacuum compatible.

The materials used for construction are chosen to minimize surface and bulk

outgassing while the parts are all engineered to prevent virtual leaks in the

vacuum chamber. More details on procedures and precautions for creating

UHV will be presented later in Section 3.3.

Notably, there is an inherent asymmetry in producing the DC electric field

in our trap. The static potential that provides axial confinement is only ap-

plied to two segmented electrodes. As a result, the actual trap frequencies

are in general slightly different from the calculated values above. Fortunately,

instead of tossing the theoretical model we have just described out of the win-

dow, we can make one modification to it to make model’s prediction reasonably

consistent with reality. Before ending this chapter on the linear Paul trap, we

would like to present this theoretical modification; although it is non-essential

to our purpose of building a functional trap, it is nonetheless something in-

teresting we may want to characterize once the entire trap system has been

completed.
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2.4 Final Thought: The Geometric Constant

While the RF potential applied to the electrodes produces an electric field

described by equation 2.1 near the center of the trap, the same in cannot

be necessarily said for the DC potential. Here, we need to introduce to the

potential produced by the “endcap electrodes” Φend the geometric constant

κ, a correction factor that accounts, in our case, for the asymmetry in the

geometry of our real trap. In other cases, when the geometry of the trap is

symmetric, as we will see later in this section, we may still need κ to account

for the complicated geometry of conductors involved in determining the field

produced by the endcap electrodes along the trap axis [6]. Numerically, κ

ranges from zero to one. Near the center of the trap, which is also the origin

of the coordinate system in our model, the potential produced by the endcap

electrodes become

Φend =
U0

z2
0

κ[z2 − 1

2
(x2 + y2)]. (2.18)

Consequently, the trap frequencies, ωz and ω′r, become

ωz =

√
2κQU0

mz2
0

(2.19)

and

ω′r =

√
Q2V 2

0

2m2Ω2r4
0

− κQU0

mz2
0

. (2.20)

There are more than one way to obtain a numerical value for κ. Some

ion trapping groups have calculated κ numerically with computer simulations.

For instance, in [8], κ has been numerically determined to be 0.325. Direct
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calculation of κ from the geometry of our trap is cumbersome. It would be,

however, interesting and useful to numerically simulate the field produced by

our electrodes and obtain κ. We can also measure the trap frequencies of

ions in the trap once the entire system is constructed and functional. Fitting

those frequency data to equations 2.19 and 2.20 will also give us κ and also

determine how well our theoretical model actually describes the behavior of a

real trap.

Modelling the electric field produced by the endcap electrodes are less com-

plicated although still difficult if the arrangement of electrodes is symmetric.

Here, we present a plausible approach for a real linear Paul consisting of four

thin segmented rod electrodes. Although this geometry is not the same as our

own, the model sheds some light on how the geometry of a real trap determines

the deviation of the trapped ion’s behavior from that in an ideal trap.

Suppose the electrode geometry of a real trap consists of four thin linear

segmented conductors set parallel and equally spaced around the z-axis, and at

equal distance r0 from it, as shown in Figure 2.5. The endcap electrodes in this

case are the four outer segments where the DC potential U0 is applied. The

RF potential is applied to the inner segments. Consequently, the length of the

inner segments is 2z0 in order to be consistent with the established theoretical

model. We need to introduce one more variable, the distance zc from the

center of the trap to one end of the electrode assembly, in this modified model

in order to fully account for the geometry of the real trap7. zc is assumed to

be much larger than z0 and r0.

7In our model for the ideal trap, zc is effectively infinite.
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Figure 2.6: Cartoon of a real trap that consists of four thin linear segmented
conductors set parallel and equally spaced around the z-axis, and at equal
distance r0 from it. The endcap electrodes in this case are the four outer
segments where the DC potential U0 is applied. The RF potential is applied
to the inner segments.

The potential generated by the endcaps, which are the outer segments of

the electrodes in this case, is an approximate solution to the boundary value

problem by assuming the conductors to be narrow strips, circular arcs in cross-

section, centered on the z-axis [2]. The boundary conditions for the endcap

electrodes in standard cylindrical coordinates are as follows: for−zc < z < −z0

and z0 < z < zc the potential is U0 at r = r0 and 0 < θ < δθ, π/2 < θ <

(π/2 + δθ), π < θ < (π + δθ), and 3π/2 < θ < (3π/2 + δθ), where δθ � π.
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Given these boundary conditions, the solutions for the potential generated by

the endcap electrodes is

Φend =
∞∑

n,m=0

AnmIm(nπr/zc) cos(nπz/zc) cos(mθ) (2.21)

where Im(x) is the modified Bessel function of the first kind,

Anm =
4U0

π2nm

sin(n z0
zc
π)

Im(nπ
zc
r0)

[1 + cos(mπ) + 2 cos(
mπ

2
)] sin(

mδθ

2
)

for n,m = 1, 2, 3... and

An0 = −8U0

πn

sin(n z0
zc
π)

I0(nπ
zc
r0)

δθ

π
.

If we expand the Bessel functions in equation 2.21 within the vicinity of the

origin, where r ≈ 0, and assume that all terms involving higher than second

order powers of r
zc

are negligible, we can simplify equation 2.21 to

Φdc =
∞∑
n=0

An0 −
U0r

2

2z2
0

∞∑
n=0

4n
z2

0

z2
c

sin(n z0
zc
π)

I(nπ
zc
r0)

δθ. (2.22)

Note that x2 + y2 = r2 and compare equation 2.22 with equation 2.18, we

can conclude that κ is the series

κ =
∞∑
n=0

4n
z2

0

z2
c

sin(n z0
zc
π)

I(nπ
zc
r0)

δθ. (2.23)

In equation 2.23, κ is derived by considering the boundary conditions of

trap with symmetric electrodes. In theory, we can do the same boundary
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condition problem for our trap, which has asymmetric electrodes. For the

purpose of constructing a functional trap, however, we do not think it necessary

to obtain an exact numerical value for κ as it is usually in the order of 10−1

and therefore does not significantly affect the trapping capacity or frequencies.

Our theoretical exploration of κ stops here also due to the ambiguity in the

definition of δθ in the literature. As mentioned earlier, it may prove to be

instructive to numerically simulate the electric field produced by our electrodes

or calculate κ from actual trap frequency data.

The linear Paul trap electrodes we have constructed is central to the system

of apparatus that will house our proposed experiment. In this chapter, we have

outlined the theory of trapping ions with an oscillating electric field, discussed

important considerations for designing the trap and described the actual trap

we have constructed. The next logical step is therefore to think about the rest

of the system that will supply the RF and DC signals to the trap electrodes,

create the ultra-high vacuum environment essential to our experiment, and

image the trapped ions.
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Chapter 3

Putting it All Together: the

Rest of the Paul Trap System

Chapter 2 takes us about half way through the apparatus-building phase of

this thesis. To complete the rest of our journey towards measuring the time

variation of µ, we need to create the environment for high-precision frequency

metrology. Therefore, the remaining challenges include constructing the power

supplies that provide the desired DC and RF signals, generating the ultra-high

vacuum (UHV) environment, and completing an imaging system so that we

can observe the trapped ions. This chapter will take us down the first few miles

of this treacherous remainder of our journey by providing some preliminary

designs, thoughts and questions
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3.1 Overview

Figure 3.1 includes a schematic of the entire Paul trap system and Appendix

C an inventory of commercially available as well as “home-made” parts. The

trap will be housed in a spherical-octagonal vacuum chamber1, which has

eight 2.75′′ ConFlat (CF) ports on its sides and two 8.00′′ ones on the top and

bottom. Six of the 2.75′′ ports and the top 8.00′′ port will be fitted with fused-

silica windows2 and used for optical access and imaging of the trapped ions.

Meanwhile, the other two 2.75′′ ports will connect to the RF power supply via

an RF vacuum feedthrough3 and UHV instruments respectively. Finally, the

bottom 8.00′′ port will be fitted with a CF flange with a welded-in multi-pin

feedthrough4; the flange will provide the base onto which we can attach the

ion trap and the multi-pin feedthrough will provide connections to the DC

power supply.

We can divide the system described above into three subsystem: the power

supplies for the electrodes, the UHV system, and the imaging system. The

following sections will address these subsystems separately and present what

we already know about them.

1Kimball Physics, MCF800-SphOct-G2C8
2The top viewport can be anti-reflection (AR) coated for 313nm. The smaller viewports

on the sides of the spherical octagon can also be AR coated according to the wavelengths of
lasers we are going to use. Kurt J. Lesker, Kimball Physics, Nor-Cal Products, and Thorlabs
are some suppliers to consider for CF viewports.

3Kurt J. Lesker, FTT1023253
4Kurt J. Lesker, IFDGG501056B
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Figure 3.1: A schematic of the Paul trap system, including the main vacuum
chamber, power supplies for the trap electrodes, the UHV pumping system
and the imaging system.

3.2 Generating the Trapping Potential

In order to generate the trapping potential described in Chapter 2, we need

to build both the DC and the RF supplies for our electrodes (Figure 3.2).

Since our entire vacuum system will go through a bake-out process (see Section

4.3), electrical connections inside the vacuum chamber cannot be soft-soldered.

Therefore, we have made threaded holes at the back of the DC electrodes

for securing copper wires to the them to make electrical contact. The bolts

that hold the Macor pieces and the RF electrodes together can also serve as
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points of electrical contact. There are also commercially available in-vacuum

connectors5. As shown in Figure 3.2, the RF components will include an RF

generator, a directional coupler, an amplifier and a helical resonator. The DC

signals will be computer-controlled6 and will pass through one or two low-

pass filters before reaching the electrodes. This section provides essentially a

complete “recipe” for building the helical resonator required for generating the

RF signal; it will also include a discussion on filtering the DC signals as well.

Figure 3.2: A schematic of the DC and RF power supplies of the system and
how they are wired to the trap electrodes.

5Kurt J. Lesker has such accessories for multi-pin feedthroughs
6National Instrument, PXI-6733 or the NIST-design fast-update digital-to-analog con-

verter used in [9].
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3.2.1 RF Power Supply

In Chapter 2, we have determined that an RF potential with frequency 10

MHz and peak-to-peak voltage 100 V should enable our trap to confine both

9Be+ and a diatomic ion not much heavier than it, such as 16O+
2 . To generate

this potential across one pair of trap electrodes, we need to “home-make” a

helical resonator. There are three advantages for using a resonator instead

of connecting an RF source directly to the trap. First, the resonator allows

impedance matching between the load, namely the ion trap, and the and

the source, therefore maximizes the power transferred to the load. Second, a

resonator also acts like a transform and boosts voltage at the trap. Finally, the

resonator forms an RLC circuit with the ion trap, which effectively acts like a

band-pass filter, passing a range of frequencies centered on a resonance while

attenuating those lower or higher than the range. We essentially want our

resonator to be a high quality factor (high-Q) band-pass filter with a narrow

bandwidth so as to reduce noise injected into the system and concentrate the

power from the RF source on the resonance frequency we need to trap ions.

This section and Appendix B7 together can be read as a “cookbook” for ob-

taining the geometric parameters that will determine the resonance frequency

and maximizes the quality factor Q. We have adopted our circuit model of the

resonator from [10]8.

7Appendix B provides the codes of a Mathematica notebook that will perform all the
calculations needed to obtain the physical parameters of the resonator, as shown in Figure
3.3. It comes with step-by-step instructions on how to design the resonator.

8Our replication of the calculations and Figures 10, 15, and 16 in [10], although matching
in terms of trend to the originals, is not exactly identical to them. This is because certain
assumptions made in [10] are unclear. For instance, it is not clear in the article what the
exact relationship between B, b, and D is. The article also does not state explicitly how the
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Figure 3.3: A schematic diagram of the helical resonator. The resonator coils
and shield are made of copper. The shield is grounded.

The resonator will contain two coils, a main coil and a smaller one to couple

the RF signal into the main coil, both of which are made of copper wires and

enclosed in a copper shield (Figure 3.3). The circuit model essentially reduces

the system of the resonator and the RF trap electrodes to an RCL circuit and

allows us to choose a combination of (d/D, d) that maximizes Q, given the

trap capacitance and resistance, which we can measure directly, the resonance

frequency we need, the diameter of the wire used (typically 5 mm), and the

group calculated the length of the wire used for the main coil from d and τ . Since more time
than necessary has already been spent on trying to get these calculations to match, the most
logical way to proceed now is to construct the resonator using the calculated geometrical
parameters as guidelines, use it to generate an RF signal and adjust the geometry of the
coils, literally by stretching or squishing them.
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winding pitch τ of the mail coil (typically twice the diameter of the wire).

Given a geometry of the main coil that maximizes Q, we can then manipulate

the geometry of the smaller coil to match the input impedance of the resonator

with that of the RF source, which is typically 50 Ω. The final product is a

resonator that has the correct resonance frequency, with a large Q, and a

matched input impedance with the source. All calculations described above

can be done using the Mathematica notebook in Appendix B.

For demonstrating how the calculations work, we have calculated some of

the geometric parameters of a resonator with resonance frequency 10 MHz

(Table 3.1). It is to be used with a hypothetical trap with capacitance 15 pF

and resistance 5 Ω. We have assumed that the diameters of the copper wires

used for both coils to be 5 mm and 3.5 mm respectively while the winding

pitches is twice the diameter for each coil. These numbers are some of the

initial inputs in Appendix B, which is meant to be read together with this

section and [10]. The Q of this resonator is about 185.

Diameter of main coil (d) 7.0 cm
Height of main coil (b) 22.8 cm
Diameter of shield (D) 17.5 cm
Height of shield (B) 31.5 cm
Diameter of coupling coil (da) 4.3 cm
(The coupling coil has 3 turns)

Table 3.1: Parameters of a resonator that will generate a 10 MHz resonance
frequency, impedance-matched to a 50 Ω RF source. See Appendix B for
details on calculations.

Once constructed, we can connect the helical resonator to the trap via

an RF vacuum feedthrough, with the resonator outside the vacuum chamber.
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The directional coupler (Figure 3.2) will allow us to monitor the percentage of

power that actually goes into the trap electrodes from the RF source; we can

adjust the geometry of the smaller coil by simply stretching or squishing it,

to maximize this percentage. With an appropriate amplifier9 and a standard,

commercially available RF generator, we should have a functioning high-Q RF

supply with the desirable resonance frequency.

3.2.2 DC Power Supply

The supply of DC signals to the trap electrodes is much simpler to build.

We need a multi-channel computer-controlled high-speed analog output and

connect individual DC electrodes to it via a multi-pin feedthrough. The only

caveat here is that we need to ensure the DC signals are free of undesirable

AC noises. This can be done with simple low-pass filters (Figure 3.2). We

definitely want to place one as close to the trap as possible inside the vacuum

chamber; its cut-off frequency should be in the order of a few hundred kHz

to filter out noises that would otherwise interfere with the secular motion of

the trapped ions (see Table 2.2). The capacitor in this filter also has the

additional job of explicitly grounding the DC electrodes at the RF frequency.

As a result, its capacitance should be much larger than the trap capacitance,

which is typically in the order of pF. The low-pass filter outside the vacuum

chamber is optional and one can always choose its cut-off frequency and build

it after experimenting without it.

9Mini-circuits is a good supplier of such simple circuits.
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3.3 Creating Ultra-high Vacuum

Once wired-up to the power supplies, the trap will be sealed in the vacuum

chamber, which will be pumped down to a UHV pressure. In theory, the lower

the pressure in the vacuum chamber the more conducive it becomes for our

experiment; in other words, a lower pressure means that there will be fewer

unwanted particles around the trapped ions to interfere with their motion,

transfer thermal energy to them or chemically react with them. In practice,

we should be able to achieve a pressure that falls in the lower end of the

UHV range, defined as pressures smaller than 10−7 Pa and greater than 10−10

Pa [11], without much difficulty. UHV range pressures should make it possible

for us to trap ions for at least hours or even up to days.

The general procedure to achieve such a low pressure involves systematic

cleaning of all surfaces inside the chamber, a few stages of pumping gases out

of the vacuum chamber with a combination of pumps and a bake-out process,

a method to remove mainly gas particles previously absorbed on the surface

or in the bulk of materials. The instruments that will create, maintain and

monitor the vacuum are connected to the chamber via a full nipple10 and a CF

multiplexer11 (Figure 3.1). The 2.75′′ port of the multiplexer will connect to

an ion pump12 while the four 1.33′′ ports will service an ion gauge, an angled

valve, a needle valve, and a Titanium-sublimation (Ti-sub) pump respectively.

The ion gauge measures the pressure in the chamber; the angled valve will

isolate the vacuum system from the turbo pump that we will use for rough

10Kurt J. Lesker, FN-0275S
11Kimball Physic,MCF275-FlgMplxr-C1r1A4
12Agilent, VacIon Plus 40-75
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pumping while the needle valve may be needed in the future for introducing a

gas into the chamber for co-trapping with 9Be+.

The rest of the section will introduce the minimum theoretical basics re-

quired for designing a procedure for creating the UHV pressure we need. It

will also include some discussion on material outgassing and choice of pumps.

References [11], [12], [13], [14], Appendices G and H of [15], and Appendix B

of [16] are highly informative on these matters; further perusal of them should

prove to be helpful for finalizing the procedure for achieving UHV environment

in our system.

3.3.1 Pumping of the Vacuum System

We do not need to know much about the theory of creating a vacuum to be

able to engineer our system; in fact, we can mostly model ours after similar

systems in [5], [7], and [16]. Nevertheless, to ensure that our design will indeed

achieve the degree of vacuum we need, some order-of-magnitude calculations

with basic understanding of the flow and sources of gas in the vacuum system

are crucial13.

The pump-down from atmospheric pressure will start with rough pumping

using a turbo pump during a few days of bake-out process. This process

raises the temperature of the entire vacuum system, typically to a few hundred

degrees Celsius or whatever the maximum temperature the “weakest link” in

the system could endure is, so as to release volatile compounds such as water

and hydrogen from the materials in the chamber. Once the pressure of the

13The discussion in this section is based primarily on Chapter 1 of [14].
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system reaches the working pressure (typically 10−3 to 10−2 Pa) of the UHV

pumps (the ion and Ti-sub pumps), we will isolate the turbo pump from

the vacuum system and switch on the the UHV pumps. At this point, two

competing factors, namely the rate at which gases enter the vacuum system

and the pump speed in the chamber, determine the ultimate pressure. One

of the main contributor of the former is surface outgassing, defined as the

rate at which gas particles previously absorbed on the surfaces of materials

escape into the chamber. We can minimize this rate substantially by rigorous

surface cleaning and pre-baking of vacuum components. Gases can also enter

the vacuum chamber through actual and virtual leaks, both of which should

be minimized by the appropriate design of the system. On the other hand,

pump speed is a measurement of the effective pumping ability of the UHV

pumps in the chamber. Specifically, the ultimate pressure Pult relates to the

two quantities by

Pult =
Qi

S
(3.1)

where Qi is the rate of constant flow of gas into the vacuum chamber and

S is the pump speed inside the chamber. Our procedure for creating the

desirable degree of vacuum therefore involves minimizing Qi and choosing the

appropriate combination of pumps to achieve the matching S.

Since the major component of Qi is surface outgassing, we can expect it to

be a function of the total surface area of all components in the chamber itself.

We will examine the other sources of Qi in detail and estimate its magnitude

in Section 3.3.2. On the other hand, the pump speed S in the vacuum chamber

is a function of the designed pump speed S0 of the two UHV pumps and the
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conductance C of the components connecting them to the vacuum chamber:

S =

(
1

S0

+
1

C

)−1

. (3.2)

Equation 3.2 shows that the effective pump speed inside the vacuum cham-

ber S is always smaller than S0 and we should maximize C in order to get

the most out of the UHV pumps. In other words, ideally the pumps should

be pumping gas directly out of the chamber. In practice, we are going to put

some distance between the pumps and the chamber because putting them right

against it at one of 2.75′′ CF ports would make it difficult to use the adjacent

ports for optical access. Modelling the components linking the pumps and

chamber as a short cylindrical tube, we can estimate C according to

C = πr2

(
k

2π

)1/2(
T

m

)1/2(
1 +

3

8

L

r

)−1

, (3.3)

where L and r the length and radius of the short tube respectively, k the

Boltzmann constant, T the temperature inside the vacuum system, and m

the molecular or atomic mass of the species of gas been pumped out [14].

Considering both equations 3.1 and 3.2 as well as estimates of Qi and C, we

should be able to choose the appropriate combination of pumps to achieve the

degree of vacuum we desire.

3.3.2 Sources of Gas in Vacuum

In this subsection, we will estimate Qi by considering two major sources of

gas particles inside the vacuum system, namely virtual leaks and outgassing
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from the surface of materials. Although there are other sources of Qi, we

have identified the two as the most significant and also the ones with obvious

remedies. [11] and [14] both offer excellent surveys of other potential problems

and their solutions. Specifically, Chapter 22 of [11] and Chapter 8 of [14]

deal with leak detection and should be a start to figuring out other possible

problems that are not mentioned here.

In a vacuum system, we always want to avoid virtual leaks, which are

sources of gas that are trapped in mechanical spaces, such as cracks and cav-

ities, of in-vacuum devices. An example of a source of virtual leaks is the

space inside a threaded hole that is not filled by the volume of the screw in it

(Figure 3.4). Gas particles trapped in enclosed but not air-tight cavities are

difficult to pump out during the bake-out and rough pumping stages but are

nevertheless going to eventually escape into the vacuum due to the pressure

difference between inside and outside the cavity. Hence virtual leaks increase

pressure inside the vacuum chamber and also the time required to achieve a

certain low pressure. Our ion trap, therefore, is engineered to prevent vir-

tual leaks. There are no blind holes to create completely enclosed cavities; all

threaded holes have either a pilot hole or are drilled through from the side (see

Appendix A and pay special attention to the electrodes). If designs of other

in-vacuum parts incorporate these virtual-leak precautions, contributions to

Qi by this type of leak after the bake-out and rough pumping stages should

be negligible.

Surface outgassing is then the major player here. Its magnitude depends

on the nature of materials inside the vacuum system and the total surface
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Figure 3.4: An example of virtual leak due to air trapped inside a cavity
enclosed in a threaded hole.

area of these material. Certain materials used to make our trap, for instance

OFHC copper for the electrodes, are chosen because they will have relatively

low outgassing rates in vacuum. To estimate the order of magnitude of total

outgassing, we can approximate the vacuum chamber as an enclosed cylinder

and then calculate its inner surface area; most of the surfaces are made of

stainless steel except for the six out of the eight 2.75′′ CF ports and the top

8.00′′ CF port, which are made of fused silica. The total surface area of stain-

less steel in the Kimball Physics spherical-octagon (MCF800-SphOct-G2C8)

vacuum chamber is about 0.04 m2. Assuming that stainless steel is the only

material that releases significant amount of gas in UHV and using the data

from Appendix C of [11] for 316L stainless steel, we estimate Qi to be about

46



2× 10−11 W.14

Our estimate of the surface outgassing rate assumes a standard cleaning

procedure. This number may potentially be further reduced by utilizing more

rigorous surface cleaning techniques or potentially coating our electrodes with

gold. Chapter 6 of [13] offers some general considerations on designing a

cleaning procedure; Appendix H of [15] and Appendix B of [16] both contain

cleaning procedures of UHV parts that have been used and tested by other

research groups. It is difficult to tell at this point which methods of cleaning

are absolutely necessary. On the other hand, coating the trap electrodes with

gold, which seems to be favored by other groups15 that have built similar traps,

may reduce the roughness of surfaces and thus the effective surface area. In

theory, outgassing can be consequently reduced. So far not much has been done

for designing the actual procedure; the next logical step should be examining

standard practices, looking into the benefits of pre-baking in-vacuum parts as

well as coating of electrodes with gold16.

3.3.3 Choice of UHV pumps

After estimating Qi to be about 2 × 10−11 W, we are now in the position to

specify the pump speed we need from our UHV pumps. Modelling compo-

14Notice that the dimension is given in W, which is Pa m3 s−1; since pump speed S is
given in m3 s−1, equation 3.1 is correct dimension-wise.

15See [5]. Coating of electrodes with gold may be beneficial for reasons that are not
the one stated here. Further investigation into the subject is needed to determine if it is
worthwhile to do it.

16That being said, the author is skeptical about the value of putting too much time
and effort into optimizing the cleaning procedure. Given that hours and manpower that is
needed for working on other parts of the apparatus, it may be best that we follow someone
else’s procedure that has proven to work but may not be the optimal.
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nents connecting the UHV pumps to the chamber as a single cylindrical tube

of length 4.93′′ and radius 2.75′′ and using equation 3.3, we estimate their com-

bined conductance to be approximately 41 L s−1 for nitrogen gas. Therefore,

if we desire the ultimate pressure to be in the order of 10−9 Pa, it follows from

equations 3.1 that we need the effective pump speed in the vacuum chamber

to be about 20 L s−1. According to equation 3.2, we need the combined pump

speed (designed) of the two UHV pumps to be about 39 Ls−1.17 Noticeably,

the effective pump speed inside the chamber can never exceed that of the con-

ductance of the components connecting the chamber to the pumps; nor can it

exceed the designed pump speeds of the UHV pumps.

We have chosen to use an ion pump and a Ti-sub pump as our UHV

pumps because this combination have been the standard practice in creating

UHV needed for ion trapping and storage. The ion pump works by ionizing

gas particles inside the vacuum chamber and essentially trapping them; the

Ti-sub pump, on the other hand, contains a filament of Titanium that is

periodically heated and then deposited on a surface in a thin-film layer, which

acts as the active surface that absorbs gases in vacuum. We are using two

pumps to ensure that all kinds of gases that may normally be present in the

vacuum chamber get pumped. The Ti-sub pump is most efficient at pumping

oxygen and carbon monoxide; it will not, however, pump inert gases because

the pumping process is essentially chemical. The ion pump will pump almost

everything, including inert gases.

Given our calculations above, one of the Agilent, VacIon Plus 40-75 ion

17Pump speed is also a function of pressure and gas type. So the estimate here is only an
average and truly an order-of-magnitude estimate.
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pumps, combined with another commercially available Ti-sub pumps with

pump speed in the same order of magnitude18, should be able to achieve a

pressure as low as 10−9 Pa. The pump speed of the Ti-sub pump is usually

given in terms of L−1s−1cm2 for different types of gases; therefore the area that

we eventually choose for depositing titanium inside the vacuum system will

determine the pump speed. More research and enquiry into a commercially

available Ti-sub pump should enable us to make a purchase of both UHV

pumps soon.

In short, in order to create the UHV environment, we will have to create

a comprehensive procedure starting from initial treatment of in-vacuum parts

to the detection of leaks after the environment has been created. So far we

have worked out the physical layout of the system and made some preliminary

decision on the choice of UHV pumps. We still need to finalize a detailed

procedure on pre-vacuum treatment of in-vacuum parts, including pre-baking

in air [17] or vacuum [16] and surface cleaning. More research needs to be done

on how exactly the bake-out process and the different stages of pumping will

take place. Finally, to prepare for the worst, a systematic method of detecting

leaks needs to be developed.

18The assumption here is that the two pumps will be pumping different gases, with the
ion pump mainly taking care of inert gases that the Ti-sub cannot pump. Therefore, the
pump speed for every species should be about the same order of magnitude in order to
simultaneously lower the partial pressures of all gases present.
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3.4 Imaging System

Finally, after being able to trap ions in UHV, we want to be able to look at

them and also count how many of them we have trapped. The imaging system

in its most basic form therefore involves an objective, which will be a series of

lenses, able to resolve individual trapped ions up to a certain population size

and project the magnified image of the ions into either a camera or a photo-

multiplier tube (PMT). In this section, we will discussion the specifications

of the objective, which needs to be custom-made, and the camera, which we

have already purchased, in the context of imaging 9Be+.

There are a few factors at play in choosing the specifications for the objec-

tive. Firstly, the objective will “collect” spontaneously emitted photons (313

nm) as a population of excited trapped ions decays to the ground state; that

means it needs to have a large enough numerical aperture to collect enough

photons per second to trigger the camera or PMT. At the same time, it should

be able to resolve individual ions trapped in the same potential well up to a

certain population. Finally, it should magnify that dimension it has resolved

so that it spans a certain minimum number of pixels of the camera.

We image trapped ions by pumping them up to an excited state using

a laser (313 nm). At saturation, one single ion has a 50% chance of being

in the excited state and the objective will collect only spontaneously emit-

ted photons, which will travel with roughly equal probability in every angle.

We can estimate the rate of spontaneous emission from the natural linewidth

of the transition and our camera has a 25% efficiency for 313 nm and needs

105 photons per second to register a signal. Consequently, we need a mini-
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mum numerical aperture of approximately 0.11 to collect enough photons for

the camera to register this trapped ion. Since the numerical aperture N.A.

= sin
(
arctan d

2L

)
, where L is the working distance and d is the diameter of

the objective, it provides us with a ratio between d and L. For instance, if the

objective has a working distance of about 50 mm19, it needs a minimum diam-

eter of about 11 mm. To be on the “safe” side, it is always better to choose an

objective with a higher numerical aperture, 0.5 for instance, provided it does

not significantly increase the cost of making it.

On the other hand, we want to be able to resolve individual ions in the

same trapping region. In order to determine the desired resolution, we have

arbitrarily decided that the objective should be able to resolve a string of 14

trapped 9Be+ ions. This translates into about a 5 µm separation between the

two ions in the center20, which means a resolution of 1 µm for the objective

will be able to resolve the two ions as two clearly distinct particles (Figure

3.5). Subsequently, the objective should be able to magnify this resolution,

say 1 µm, to at least a minimum number, say five, of pixels. For the camera

we have purchased21 which has a single pixel size of 8 µm, that means we need

19This working distance means the objective will be outside the vacuum chamber, as
shown in Figure 3.1. We have considered the possibility of placing it inside the chamber,
which has its advantages and disadvantages. One of the reasons for doing so is that we
can get the same numerical aperture with a smaller diameter for the objective by placing
it closer to the trap, which generally means it will be cheaper. But in order to adjust the
positions of the objective for focusing, some groups have installed it on an in-vacuum piezo-
stage positioner [7], which is costly. In the end, we consider it a better alternative to place
the objective outside the chamber right against the top 8′′ CF flange for the ease of focusing
and also a significantly lower cost.

20This calculation is done by assuming the ions are point charges inside a pseudo-potential
well and each of them generates its own coulomb potential. The position of each ion is
obtained by minimizing the total potential energy of the system. See [18] and [19].

21Andor iXon3-885 DU-885K-CS0-#VP
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a magnification of 40.
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Figure 3.5: A “cross-section” of what two point sources, which are two trapped
ions, look like through a circular aperture with N.A. = 0.5. The axes are not
strictly calibrated to literally measure brightness or position but are propor-
tional to those two parameters. The two ions are separated by about 5 µm.
The objective has a resolution of 1 µm, a numerical aperture of 0.5, a working
distance of 50 mm and thus a corresponding diameter of about 58 mm. It is
clear that given the geometry of the aperture that is the objective, its 1 µm
resolution is powerful enough to completely resolve the two ions.

In short, here is our suggested specification for the assembly of lenses that is

going to be the objective (Table 3.2). This assembly needs to be custom-made

and the suggested specifications may not be the most cost effective, although

it will certain do its job.

These specifications can be handed over to an optics company for custom-

making the assembly of lenses we need. We have been in touch with Sill Optics,

a German company, for some preliminary design. Sill has offered us a design

previously done for another customer and the working distance is 40 mm, 10

mm shorter than the 50 mm distance that we may have to place between the
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Resolution 1 µm
Numerical aperture 0.5
Magnification 40
Working distance 50 mm
AR coating a broad band that covers 280 - 400 nm

Table 3.2: Suggested specifications for the assembly of custom-made lenses
that will act as the objective

objective and the trapped ions. This particularly design is in production and

costs $5000. A completely new design will cost perhaps five times as much in

engineering and production with Sill. It may be difficult but still possible to

bring our objective to as close as 40 mm to the trap center while keeping it

outside the vacuum chamber. We can also seek another optics company which

may be able to meet the specifications in Table 3.2 with a lower cost.

Although we have already constructed a linear Paul trap and have done

some preliminary designs for all three subsystems of the rest of the apparatus,

namely the power supplies for the electrodes, the UHV system, and the imaging

system, our journey towards performing high-precision spectroscopy on co-

trapped ions is far from finished. Also, besides the Paul trap system described

in Chapters 2 and 3, we need to construct the lasers and optics necessary for

controlling, interrogating and imaging trapped ions, which is out of the scope

of this thesis. Nevertheless, it is still useful and perhaps inspiring to keep our

eyes on the prize and take a look at our final destination in the next chapter.
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Chapter 4

Our Final Destination:

Measuring the Time-variation of

Electron-Proton Mass Ratio

The purpose of constructing the Linear Paul trap system is to house our ex-

periment that will eventually measure the time-variation of electron-to-proton

mass ratio (µ) by high precision frequency metrology. Such time dependence

of µ arises naturally from theories of quantum gravity, which motivate our

proposed laboratory work. Although there have been numerous efforts in

quantifying dµ/dt, we are confident that our proposed experiment may lead

to a better assessment of the variation. The principal idea behind our experi-

ment, namely quantum logic spectroscopy, may not only result in a new limit

for the time-variation of µ but will also allow us to develop a novel method

for performing spectroscopy with diatomic molecular ions.
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4.1 Theoretical Motivations

In our ever-expanding Universe it actually makes sense to consider the possi-

bility of spacetime dependence in the “constants” of nature over time during

evolution of the Universe [20]. Paul Dirac proposed the large-number hypoth-

esis (LNH), which asserts that all the large dimensionless numbers occurring

in Nature, such as the age of the Universe, are connected with the present

epoch, expressed in atomic units, and thus vary with time. The LNH requires

variations of certain free parameters in our physical theories, such as the grav-

itational constant G [21]. The simplicity of the LNH and its large predictive

power has led to continuous theoretical and experimental efforts in the search

of time-variation of fundamental constants [22].

In unified theories of fundamental interactions, dimensionless constants

such as the fine structure constant α, and µ are not necessarily constant [23].

For instance, generalized Kaluza-Klein (KK) models, which offer the attractive

possibility of unifying gravity and other fundamental forces, enlarge spacetime

into 4+N dimensions and predict that if the mean KK radius of the extra

dimensions expands, contracts or oscillates, we would observe time-variations

of “constants” in our conventional four dimensions [24]. Superstring theories,

in addition, also offer a framework in which the values of fundamental constants

can vary [23]. Consequently, experimentally examining the possibility of time-

variation of parameters that we have assumed to be spacetime-independent

can potentially lead to confirmation or rejection of unifying theories.

The dimensionless ratio µ is an especially important candidate for this par-

ticular investigation. Firstly, it is crucial that we observe the time-variation of
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a dimensionless quantity. Even nominally dimensional quantities, for example

length, are in fact ratios to arbitrary standards chosen to be units. Since our

definition of units and the values of fundamental constants are entangled in

such a way that any measurement of dimensional quantities is dependent on

definitions of units, it only makes sense to consider the time-dependence of

dimensionless quantities [23].

Secondly, time-variation in µ, if non-zero, has profound implications on

our understanding of fundamental interactions. The electron, as an elemen-

tary particle, derives its mass directly from the Higgs mechanism via the elec-

troweak interaction [25]. On the other hand, the bulk of the proton’s mass

comes from the quantum chromodynamics biding energy of the gluons, gauge

bosons of the strong interaction, that hold the three quarks in the proton to-

gether [25]. Therefore, time-variation in µ will indicate a time dependence of

the relative strength between the electroweak and strong interactions.

Theoretical speculations as well as the ramifications of such measurements

have motivated searches for bounds of the time-variation in µ from both astro-

nomical and laboratory data. These bounds have provided us with a standard

of precision which we hope to improve by designing a novel experiment. The

experimental methods of previous laboratory searches have also offered in-

sights into the kinds of systematic effect that generally limit the precision of

such measurements.
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4.2 The Stability of µ

It is first pointed out by R. Thompson in 1975 that molecular absorption lines

can provide a revenue for measuring the time-variation of µ [26]. According

to Thompson’s reasoning, the energy difference between two rotational levels

scales as Mr−2, where M is the reduced mass and r is the bond-length. In

the case of molecular hydrogen, the electronic transitions scale as me while

M = mp/2; comparing purely rotational transitions with electronic transitions

gives a measurement of µ.

Following Thompson’s reasoning, the frequency ν of a vibration-rotational

transition, in the Born-Oppenheimer approximation, scales as

ν ∝ (celec + cvib/
√
µ+ crot/µ), (4.1)

where celec, cvib and crot are respectively constants of proportionality intrinsic

to the electronic, vibrational and rotational components of the transition in a

diatomic molecule under observation. The relation in equation 4.1 is the very

theoretical basis of previous research efforts aiming to put bounds on the size

of the time-variation of µ. Both [23] and [27] offer more comprehensive reviews

of recent results. One general approach is comparing the ratios of wavelengths

of various electronic-vibration-rotational transitions in astrophysical spectra,

obtain a measurement of µ and compare it with present day laboratory value.

Another approach is comparing transition frequencies obtained through high-

precision molecular spectroscopy. Right as this chapter was being drafted, a

result with currently the highest precision from radio-astronomical observa-
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tions of PKS1830-211 was published in [28]. Bagdonaite et al. deduced a

constraint of δµ/µ = (0.0± 0.1)× 10−7 at z = 0.89, corresponding to a look-

time of 7 billion years. Another comparable result, which is referred to in the

next section, published in 2011 sets the limit of ∆µ/µ at < 3.6 × 10−7 over

6.2 Gyr [29]. The best model-free result of 1
µ
δµ
δt

from laboratory spectroscopy

data is (−3.8± 5.6)× 10−14 yr−1 [30].

4.2.1 Bounds from Astronomical Data

Redshifted absorption spectra of molecules from distant quasars provide an

excellent source of data for calculating what the value of µ used to be when

the light was emitted billions of years ago. Results from analyzing these molec-

ular spectra, however, currently provide us with conflicting conclusions as to

whether µ changes over time. For a comprehensive review of recent results,

one can refer to the introduction of [29] .

Re-analysis of H2 spectral lines observed in Q 0347-383 and Q 0405-443

quasars by Reinhold et al [31], published in 2006, gives a weighted fractional

change in µ of ∆µ/µ = (2.4 ± 0.6) × 10−5 over the past 12 billion years.

Currently, this is the best result that predicts a non-zero time variation, par-

ticularly a decrease, in µ over cosmological time-scale at a 3.5σ confidence

level.

When two molecular energy levels have different dependencies on µ, the

spectral line wavelength representing a transition from one level to the other

is sensitive to changes in µ. A coefficient Ki is a numerical evaluation of

this relative sensitivity. Consequently, after compensating for cosmological
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redshift, Ki relates the fractional change of µ to the ratio of the absorption

line wavelength λi in the quasar absorption system to that in the present day

rest-frame λ0
i via

λi/λ
0
i = 1 +Ki∆µ/µ. (4.2)

By including deviations from the Born-Oppenheimer approximation in their

model, Reinhold et al. derived an improved calculation of Ki, which makes

their analysis better than previous ones [31]. They also had a set of high-

quality observation of H2 spectrum as well as more accurate present-day H2

spectroscopic measurements. With the set of improved Ki values and more ac-

curate spectral measurements, ∆µ/µ was obtained by fitting the spectroscopy

data and the Ki values to equation 4.2. The uncertainty in the final measure-

ment of ∆µ/µ reflects both systematic errors in the measurements of transition

frequencies, of H2 in the present-day rest frame as well as that in the quasars,

and how well the model describes the dependence of λi/λ
0
i on the fractional

change in µ.

Another strong limit, together with the presently strongest limit recently

published in [28], obtained from astronomical data, however, contradicts the

conclusion of the abovementioned analysis; an analysis of NH3, Cs, and H2CO

spectral lines from the z ∼ 0.685 absorber toward the quasar B0218+357

concludes that there is no statistically significant (≥ 3σ) evidence for changes

in µ over the past 6.5 billion years and obtained a constraint of ∆µ/µ <

3.6 × 10−7 at 3σ confidence level [29]. The model used in [29] is described

in [32]. The analysis in [29] addresses directly most of the systematic effects

in the next best result using NH3 spectrum from the same quasar published
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in [33]. But it is unable to quantify two possible sources of systematic errors: 1)

the time variability in the background source morphology and 2) the possibility

that nitrogen-bearing species such as NH3 might arise at different velocities

than the carbon-bearing species, to whose transition frequencies its own are

compared.

By looking at the two contradicting conclusions, it becomes apparent that

analyses of astronomical data are inherently difficult. The measurements of

time-variation in µ are dependent on statistical models that determines which

spectral lines are “good” for analysis. Moreover, there exist systematic ef-

fects extremely difficult to quantify; methods quantifying those that can be

addressed are often model-dependent. Finally, if we want to obtain a rate at

which the fractional change of µ varies with time, we have to again assume

a model. Nevertheless, analyses of astronomical data have opened serious

questions of the stability of µ. Precision measurements of molecular spectral

frequencies in a controlled laboratory environment, on the other hand, can

eliminate many systematic effects associated with astronomical data. It can

also allow model-free calculation of the time-dependence of µ through com-

parison of spectral frequencies.

4.2.2 Bounds from Laboratory Spectroscopic Data

In the large majority of laboratory experiments measuring the temporal varia-

tions of fundamental constants, frequency measurements of two atomic clocks

are compared; the fine structure constant α and the Rydberg constant Ry

seem to be the most significant parameters studied [27]. Some examples of
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model-free methods proposed for studying the time-dependence of µ involve

measuring the vibrational energy intervals using ultracold Sr2 trapped in an

optical lattice [34], and studying certain narrow spectral lines in Cs2 [35]. A

recent model-free laboratory experiment comparing a molecular clock to an

atomic clock measures 1
µ
δµ
δt

to be (−3.8± 5.6)× 10−14 yr−1 [30]. This result is

consistent with zero and sets the standard of precision that we hope to surpass

with our experiment.

The experiment, published in [30] by Shelkovnikov et al., measures the

frequency of a molecular transition in SF6 by interrogating a cold beam of

SF6 molecules with a CO2 laser and compares it to an atomic transition in

a Cs clock. The frequencies (ν) involved scale as ν(SF6) = K1
√
µRy, and

ν(Cs) = K2(µCs/µB)α2F (α)Ry, where K1 and K2 are constants indicating the

relative sensitivity of the transition of changes in µ, µCs is the magnetic dipole

moment of the Cs nucleus, µB the Bohr magneton, and F (α) a dimensionless

function counting for relativistic effects in Cs and is proportional to α0.83.

The ratio of the two frequencies is clearly a function of µ, along with other

“constants” α, µCs and µB. By measuring the fractional change in this ratio

over a period of time, one can calculate the fractional change in µ with respect

to time by the equation below:

1

ν(SF6)/ν(Cs)

δ(ν(SF6)/ν(Cs))

δt
= − 1

2µ

δµ

δt
− 2.83

α

δα

δt
− 1

µCs/µB

δ(µCs/µB)

δt
.

(4.3)

To calculate the fractional change of µ over time, Shelkovnikov et al. used data

for the fractional temporal variations of α and (µCs/µB) obtained from atomic
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clock experiments. There are two implications for using equation 4.3. Firstly,

it means that the conclusion in [30] is model-free; it does not utilize any of the

current models to derive the fractional temporal variations of α or (µCs/µB) ab

initio but uses the best empirical values instead. We prefer our future results

to be model-free because that means we will have to make fewer assumptions

about our system; a recent attempt using a Sr atomic clock to put a limit on

the gravitational dependence of the fractional change in µ done Blatt et al., for

instance, is less ideal since the group had used a model for calculating nuclear

magnetic moments [36]. Secondly, in both cases of α and (µCs/µB) the current

limits are a factor of ten or more below the the calculated fractional change in

µ [37]; that means the uncertainty in the calculation of the fractional temporal

change of µ mainly comes from the statistical error associating with averaging

the individual frequency measurements, and systematic effects inherent to the

experimental method.

Reducing systematic effects is what a better experiment, such as the one we

hope to perform, will have to achieve in order to improve precision and further

push down the error bar. Sources of systematic errors that Shelkovnikov et

al. have quantified in their study of the SF6 transitions are mainly frequency

shifts and noise in the lasers, changes in temperature and pressure of the

molecular beam and blackbody radiation shifts (caused by changes in room

temperature). Therefore, one way of improving the measurement of 1
µ
δµ
δt

is to

design an experiment that avoids these sources of error.

Another approach to achieve an improved measurement is to ask the ques-

tion that whether the transition interrogated in SF6 is objectively the “best”
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for performing high-precision metrology on molecules. In other words, the

intrinsic properties of the transition measured may limit the precision that

one can achieve in determining its frequencies. We are designing the exper-

iment with the hope that it will bring about an increase in precision in the

measurement of the time-variation of µ by addressing both of those aspects.

4.3 Search for the Most Suitable Diatomic Molec-

ular Ion

The latter aspect of the two mentioned in the previous section, that of im-

proving the precision of measurements of µ by choosing a “better” transition

in a diatomic molecule, has been the subject of numerous research efforts. We

consider primarily diatomic molecule because they have the simplest struc-

ture after the single-atom system. There are two criteria for determining if a

particular transition in a certain diatomic molecule is good for spectroscopy.

First, the transition should be sensitive to temporal changes in µ. In other

words, we should use a transition in which the manifestation of a change in µ

in terms of a frequency shift of the transition is maximized. Second, we should

be able to in principle measure the transition frequency with maximum preci-

sion or minimum fractional error. This criterion also entails that the diatomic

system should be simple enough that we can make corrections for all kinds of

frequency shifts.

For a given physical system, there is a proportionality relation between

∆µ/µ and the corresponding fractional change in the transition frequency ν
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associated with the change in µ,

∆µ

µ
= K

∆ν

ν
, (4.4)

where K is the sensitivity coefficient and usually in the order of one. From

equation 4.4, it is easy to see that K = d lnµ
d ln ν

. Therefore, the uncertainty

δµ as a fraction the measurement of µ can be expressed as a function of the

uncertainty δν in the measurement of ν:

δµ

µ
= K

δν

ν
=
d lnµ

d ln ν

δν

ν
= (

dν

d lnµ
)−1δν. (4.5)

In order to keep up with the notation here, one must remember that δ always

indicates uncertainty and d derivative while ∆ represents a change in a physical

parameter. Equation 4.51 basically tells us that for a given set of experimental

constrains that limit how small δν is, we need to maximize dν
d lnµ

in order to

obtain the minimum fractional uncertainty in the measurement of ∆ν. In

other words, the highest possible precision can only be achieved if we choose

to measure a transition where the maximum absolute frequency shift arises

from a given fractional change in µ.

Studies of Cs2 and Sr2 in [35] and [34] respectively are examples of efforts

looking for such transitions. In their study of Cs2, DeMille et al. [35] approx-

imate the vibrational energy levels Ev in order to find those that will render

the maximum absolute frequency shift. They find the the energy sensitivity

1The last step in the derivation of equation 4.5 assumes that the experimental limitations
constrain δν rather than the fractional uncertainty.
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of Ev to be

∆µEv =
v + 1/2

2ρ(Ev)
, (4.6)

where v is the quantum number for the vibrational energy levels and ρ(Ev) =

(δEv/δv)−1 ≈ (Ev−Ev−1)−1 is the energy density of states at energy Ev. From

equation 4.6 and the classical approximate of ρ(Ev), DeMille et al. concludes

that near its minimum where the typical potential is harmonic, ∆µEv gets an

approximately v-fold enhancement for the vth vibrational level; in other words,

near the ground state ∆ν due to a given fractional change in µ increases with

the quantum number v. For large values of v and Ev near the dissociation limit

of the molecule, although the potential is not harmonic ρ(Ev) also increases

with increasing v. Hence, the value of ∆µEv decreases with increasing v for

the highest energy levels. This implies that at some intermediate quantum

number v, ∆Eµ and thus δν and the fractional change in µ are maximized.

In [34], an essentially similar theoretical argument is used to reach the same

conclusion with Sr2. Determining this quantum number therefore addresses

the first criterion mentioned earlier in this section.

On the other hand, since systematic effects and thus δν in the measurement

of ν are often proportional its magnitude, in order to partially address the

second criterion of minimizing the fractional error of our measurement one

can aim to maximize ∆ν/ν; assuming that ∆ν is already maximized, we can

do so by minimizing ν. One way to achieve this goal without compromising the

first criterion discussed above is to choose two close-lying molecular electronic

potentials X and Y, with potential 0 and EY respectively [35]. In this case, an

excited level highly sensitive to changes of µ in X with vibrational quantum
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number vX � 1 and energy EvX can be really close to a lower vibrational

level that is less sensitive to µ in Y with energy EY + EvY . Consequently,

the frequency ν of this transition that one measures is small because the total

energy difference between the two states is small; but the sensitivity of the

transition to fractional changes in µ is still in a sense maximized.

Zelevinsky et al., on the other hand, choose find a transition that exclu-

sively maximize sensitivity to changes in µ without trying to minimize δν.

Their all-optical approach maximizes sensitivity through the cumulative effect

of the entire molecular potential depth and is also expected to suppress certain

systematic effects, although the microwave measurement proposed in [35] is

going to have a smaller δν [34]. In other words, Zelevinsky et al. choose to

cover the first criterion really well in order to afford not doing so for the second

criterion.

Both DeMille et al. and Zelevinsky et al. are looking for a transition in

diatomic molecular systems that they consider as “simple” to address. Cs2,

the subject of interest in [35], has two low-lying, overlapping potentials: the

deep X1Σ+
g ground state and the shallower a3Σ+

u . DeMille et al. conclude that

the near degeneracy between the va = 37 and the vX = 138 levels provides an

excellent example of a system with all the favorable properties discussed above.

Cs2 is considered an ideal candidate for spectroscopy because all rovibrational

levels in Cs2 have long radiative lifetime (� 1s). The long lifetime makes

it possible to yield spectral lines with narrow width (energy-time-uncertainty

principle) and since the statistical uncertainty for measuring ν is directly pro-

portional to this linewidth, Cs2 inherently permits a more precise measurement
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than molecules with states of short lifetime. Furthermore, the technology for

reliably preparing ultracold Cs2 in the a3Σ+
u state is readily available.

Zelevinsky et al. choose to look at transitions in alkaline-earth-metal-type

molecules, Sr2 in particular, also due to the simplicity of those systems. The

lack of electronic nuclear spin in the electronic ground state X1Σ+
g of these

molecules means that there is only one ground state rather than a hyperfine

manifold. This allows reliable theoretical modeling and prediction of vibra-

tional levels as well as better understanding and quantification of systematic

frequency shifts. Furthermore, the zero angular momentum guarantees an

absence of magnetic structure in the electronic ground state, simplifying the

preparation of the initial states and reducing systematic effects. Finally, the

existence of spin-triplet metastable states that have large Franck-Condon fac-

tors with the ground state guarantees narrow width of the spectral lines (and

thus naturally reduced statistical uncertainty for frequency measurements) and

ensures that very low laser intensities are needed to interrogate the molecules.

Zelevinsky et al. conclude that certain transitions in Sr2 between vibrational

levels in the electronic ground state X1Σ+
g and those in the metastable state

0+
u are highly sensitive to the fractional change in µ. They propose a scheme

that compares the frequency of one of these transitions to that of the least sen-

sitive one to the fractional change in µ.2 The difference of the two transitions,

2In the experiment proposed by DeMille et al. in [35], the frequency transition chosen in
Cs2 for spectroscopy is compared to a Cs clock. That means it will eventually be given in Hz
as the Cs clock defines the unit for time. However, given that the precision of frequencies
reported in Hz is ultimately limited by the precision of the Cs clock, one would imagine
that a scheme that promises a higher precision has to move away from reporting frequencies
in Hz but instead report it as a ratio to another transition frequency in the same atom or
molecule with which one is trying to perform precision metrology. The assumption behind
this statement is that by measuring the frequency of a transition in another species, one has
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normalized by their sum, doubles the sensitivity of the frequency measure-

ments to the fractional change in µ while eliminating any drift in a frequency

reference used to stablize the frequency comb used the proposed experiment

(see [34] for details).

The moral of these two proposed experiments is that the transition in which

we look for the time variation of µ sets the upper bound for the precision we

could achieve, independent of the method of spectroscopy. On one hand, we

need to choose a transition where its frequency experiences a maximum shift

for a given fractional change in µ; in order to find that transition we need a

model (or models) for the vibrational energy levels in the diatomic molecule

we are considering. On the other hand, this transition should be narrow,

and the lifetime of the metastable state involved needs to be long enough so

that the natural linewidth of the frequency is minimized while it should also

be “simple” enough so that we can either quantify or minimize systematic

shifts in its frequency. Choosing a molecule and a transition that have all

the favorable properties above is essentially going to increase the precision

of measurements relative to previous experiments via the second of the two

approaches discussed in Section 4.2.2.

Noticeably, both [35] and [34] have pointed out the ease of cooling as an

important consideration when choosing the diatomic molecule used in their

respective experiments; essentially, the species chosen must have a transition

available for laser-cooling so as to eliminate velocity-related systematic fre-

effectively built a new clock. It is likely that the transitions in this new clock are measured
more precisely than those in the CS clock. Therefore, one should presumably be better off
using another transition frequency in the new clock as the basis of comparison.
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quency shifts. The next section will address the first of the two approaches

mentioned in Section 4.2.2 for improving the precision of measurements of µ

and its temporal changes by proposing a different method of spectroscopy.

Since the new method involves sympathetic cooling of a diatomic molecular

ion by an atomic ion instead of direct laser cooling, diatomic molecules that

cannot be cooled directly and thus are not considered in [35] and [34] are now

available to us for spectroscopy

As part of our preliminary effort to find the ideal molecule and transition,

we have examined the molecular ion of oxygen 16O+
2 as a possible candidate.

Similar to Sr2, 16O+
2 has no nuclear spin in its electronic ground state and

therefore no hyperfine structure in the ground state. Moreover, 16O+
2 has a

deeply bound (dissociation energy is 6.663 eV [38]) ground state X2Πg with

56 vibrational states; the one with vX = 21 has a near degeneracy with the

lowest vibrational state of the first excite state a4Πu. Using a generic Morse

potential for modelling these vibrational states as in [34] and [35], we estimate

the sensitivity of the vx = 21 vibrational level in the ground state to the

change in lnµ to be dν
dlnµ
≈ 381THz. This sensitivity is a little more than

50 times better than that estimated in [34], which is about 7.5 THz. In other

words, by choosing a “better” transition alone we can expect at least an order-

of-magnitude increase in the precision of our measurements of ∆µ. Further

reducing systematic effects in the method of spectroscopy will only enhance

our precision by lowering δν as in equation 4.5.
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4.4 Quantum Logic Spectroscopy

As mentioned in the previous section, the experiment we propose involves sym-

pathetic cooling a molecular ion by an atomic ion, both of which are trapped in

the same potential well in the linear Paul trap described in Chapter 3. As the

motional modes of individual ions are coupled by Coulomb interaction, we can

use the atomic ion to cool the molecular ion’s rotational and vibrational de-

grees of freedom, efficiently prepare initial states and detect final states of the

molecular ion. The method, known as quantum logic spectroscopy, deploys

recently developed quantum information processing techniques and removes

the requirements for efficient cooling, state preparation, and state detection

from the species upon which the spectroscopy is performed [39].

4.4.1 How it works

Quantum logic spectroscopy has been demonstrated experimentally in [39]

with an 27Al+ sympathetically cooled to its motional (translational, vibrational

and rotational) ground state by a 9Be+. Although no such spectroscopy has

been performed on molecular ion, [40], [8], and [41] have reported sympathetic

cooling of the motional degrees of freedom of neutral and charged molecules.

This section will describe the basic idea of quantum logic spectroscopy, the

method that we hope to use to perform spectroscopy with a diatomic molecule,

possibly 16O+
2 .

To describe the principle of quantum logic spectroscopy as in [39], we con-

sider an atomic ion and a molecular ion, which we will designate as the logic
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ion and the spectroscopy ion respectively, trapped in the same potential well

of our linear Paul trap. We are interested in the normal modes resulted from

the Coulomb interaction of the two ions. The internal states of the ions are

represented by two eignestates |↑〉L,S and |↓〉L,S3 and each internal state ac-

commodates motional states |n〉m, where n represents quanta of motion. To

start, we assume that all normal modes have been cooled to their ground states

(Figure 4.1A) by laser-cooling of the logic ion, which sympathetically cools the

spectroscopy ion. The initial state of the two ions can therefore be described

by the wave function Ψ0 = |↓〉S |↓〉L |0〉m.

We will excite the spectroscopy ion with a laser tuned near resonance to the

transition with which we have chosen to perform spectroscopy (Figure 4.1B).

Consequently, the wave function becomes

Ψ0 → Ψ1 = (α |↓〉S +β |↑〉S) |↓〉L |0〉m = (α |0〉m |↓〉S +β |0〉m |↑〉S) |↓〉L , (4.7)

where |α|2 + |β|2 = 1.

Next, we apply a red sideband (RSB) π pulse to the spectroscopy ion

(Figure 4.1C) so that

Ψ1 → Ψ2 = (α |↓〉S |0〉m +β |↓〉S |1〉m) |↓〉L = |↓〉S |↓〉L (α |0〉m +β |1〉m), (4.8)

thereby mapping the probability density of the spectroscopy ion being in each

of its internal states after step B to its motional states. The key here is that

3The indices L and S denote the logic and spectroscopy ions respectively. The spin-up
and spin-down symbols do not indicate the internal state to be necessarily a spin-1/2 system.
In fact it is generally not.
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the |↓〉S |0〉m portion of Ψ1 is unaffected by the RSB π pulse since the state

|↑〉S |−1〉m does not exist.

We then apply a different RSB π pulse to the logic ion so that

Ψ1 → Ψfinal = |↓〉s (α |↓〉L + β |↑〉L) |0〉m , (4.9)

thereby completing the mapping of the spectroscopy ion’s state after step B

to the final state of the logic ion. Assuming that we can effectively detect

|↓〉L |0〉m, by repeating this experiment many times, we can determine the

probabilities |α|2 and |β|2 as a function of the frequency of the spectroscopy

laser frequency used in step B. The frequency that corresponds to a mini-

mum |α|2 or a maximum |β|2 is therefore a measurement of the transition

|↓〉S |0〉m → |↑〉S |0〉m.
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Figure 4.1: Quantum logic spectroscopy. (A) We start in |↓〉S |↓〉L |0〉m, as-
suming all normal modes have been cooled to their ground states. (B) We will
excite the spectroscopy ion with a laser tuned near resonance to the transition
with which we have chosen to perform spectroscopy. (C) Next, we apply a
red sideband (RSB) π pulse to the spectroscopy ion.(D) Finally, we apply a
different RSB π pulse to the logic ion and detect the |↓〉S |0〉m state.

We plan to implement this technique, which has been realized with atomic

ions in [39], with a 9Be+ as the logic ion and a diatomic molecular ion as the

spectroscopy ion. The feasibility of this technique with molecular ions then

depends critically on if we can efficiently and reliably prepare the initial state

in which ions need to be in at the start of this procedure.

4.4.2 Initial State Preparation

When we sympathetically cool the molecular ion with the atomic ion, typically

excited electronic and vibrational states of the molecular ion will decay to their

ground states within nanoseconds and milliseconds, and the rotational state

distribution will follow a thermal distribution corresponding to the blackbody
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temperature of the trap [42]. To prepare the initial state for spectroscopy

with the molecular ion is therefore essentially manipulating its rotational state

reliably and efficiently, and ideally without altering its electronic or vibrational

state. The only other degree of freedom left here is the hyperfine structure

of the molecule. Here we assume that it does not exist in the ground state,

which will be true if we choose our spectroscopy ion wisely.

Schemes for rotational cooling of molecular ions, where the mass of the

molecular ion is not too much larger than that of the atomic ion, have been

proposed in [39] and [42]. The basic idea is to first apply a transfer pulse to the

spectroscopy ion so as to drive a Raman transition (more on how to accomplish

Raman transitions later) from the Jth rotational state to, say, the (J − 1)st

rotational state, adding one quantum of motion in the process (Figure 4.2A).

If in the case of linear and spherical-top molecules, J → J ± 1 transitions are

forbidden, we will then drive the J → J −2 in those cases. The transition will

only work in one direction because the other way, |J − 1, n = 0〉 → |J, n = −1〉

or |J − 2, n = 0〉 → |J, n = −1〉 is forbidden. We can then remove the one

quantum of motion by ground state cooling to the atomic (logic) ion (Figure

4.2B), driving it to its excited state while removing a quantum of motion

via another Raman transition. Eventually, we can detect the final state of

the molecular ion by determining if the atomic ion has been excited (Figure

4.2C). If the molecular ion has been successfully transferred the (J − 1)st or

(J − 2)nd rotational state, the atomic ion can be reset to the ground state by

optical pumping without disturbing the rovibrational or electronic state of the

molecular ion. In this way, rotational cooling of the molecular ion has been
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achieved and the system is ready for further manipulation or spectroscopy as

described in Section 4.4.1.
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Figure 4.2: Rotational cooling of the spectroscopy ion (energy levels not to
scale). (A) The spectroscopy ion undergoes a Raman transition from the Jth
rotational state to the J − 1st or J − 2nd state, gaining a quantum of motion.
(B) Excitation of the logic ion from the ground state g to the excited state
g. Since the motional states of the two ions are coupled, the spectroscopy
ion will be in the |J − 1, n = 0〉 or |J − 2, n = 0〉 state as desired. (C) We
can effectively detect the final state of the spectroscopy ion by detecting the
electronic state of the logic ion. This is done by laser-induced fluorescence on
a cycling transition connecting g and a fast-decaying state f. If there is no
fluorescence, the logic ion is in the excited state e. It can then be restored to
g by optical pumping.
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The Raman transitions in the procedure described above are driven by

two lasers, both detuned from resonance with an excited electronic state, and

their relative detuning is equal to the transition frequency. If the transition fre-

quency is small enough (in the order of MHz), the two lasers can be produced

by splitting a continuous-wave laser and frequency-shifted with an acousto-

or electro-optic modulator to create the frequency difference. If the transi-

tion frequency is in the order of many GHz or larger, we can drive it with a

frequency-comb laser of equally spaced frequencies. In general, a large Raman

transition of the molecular ion driven by a frequency-comb laser requires that

the resonance condition

Nωm + ∆ω0 = ΩJ,J±1,2 + nω± (4.10)

is fulfilled. In equation 4.10, N and n are integers, ωm the comb mode spacing,

∆ω0 the frequency shift added by the modulator, ΩJ,J±1,2 the energy different

between two rotational states, and nω± is n quanta of motion [42]4. For

instance, the resonance frequency for the J → J − 2 transition (∆J = ±1

is forbidden) in the 16O+
2 X2Π1/2g ground state is 302.2 GHz; in order to

drive this transition, we can use a comb that has 1 GHz mode spacing and an

additional shift of 200 MHz from a modulator. In other words, N = 302 in

this case.

As for the integer n in equation 4.10, transitions with n = 0 will have the

largest transition rate, while the nth “sideband” will be suppressed by the nth

4ω+ and ω− are frequencies of motional modes of the molecular and atomic ions, coupled
by Coulomb interaction.
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power of the Lamb-Dicke parameter. In our procedure, we will be driving the

first sideband, which is the motion-altering state with the highest transition

rate and changes the motional state by one quantum.

Furthermore, integrating the frequency-comb laser into quantum logic spec-

troscopy will enable rapid precise measurements of the rotational structure of

many molecules. This in itself is an important experimental goal, with in-

creases in precision of up to several orders of magnitude. We can in fact begin

our research by probing the ground state rotation structure of 16O+
2 so as to

determine its sensitivity to the fractional change in µ.

To conclude, this chapter has provided some insights into the theoreti-

cal motivation of chasing our long-term research goal – measuring the time-

variation in µ. A survey of previous research efforts has also provided us with

some idea of the level of precision our experiment should strike for. Finally,

we have also outlined a plausible experimental method that will enable us to

perform high-precision frequency metrology that will eventually lead to better

measurements of the time-variation of µ.
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Chapter 5

Not A Conclusion

Since this thesis is not an end but rather a beginning of our ambition to

measure the time-variation of µ, this final chapter is not meant to conclude.

Instead, it takes a look at where we are currently and makes “to-do” lists that

will take us further. We have done something for every part of the linear Paul

trap system. We have also thought about our experimental method and how

as well as why it will allow us to observe the time-variation of µ, potentially

better than many other methods out there. In order to keep moving forward

from what is already known and done towards our final destination, it is then

useful to re-examine every aspect of our adventure addressed in this thesis and

ask questions and consider what to do next.

In terms of apparatus building, we have constructed the assembly of elec-

trodes for the trap based on the requirements of our proposed experiment

(Chapter 2). Although we have a good understanding of how the linear Paul

trap works and are confident that our electrodes will be able to confine a 9Be+
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ion and a diatomic ion, certain properties of the trap, such as the actual electric

potential it produces, are unknown to us because we do not have a mathemat-

ical model for quantifying them. One interesting and potentially useful thing

to do is to numerically simulate the electric potential generated by the trap

electrodes with a electric field modeling software. The computer-generated

model will allow us to calculate the trap frequencies of the trapped ions and

these calculated frequencies will be closer to reality than those in Chapter 2.

Knowing the trap frequencies more accurately will help us in the designing

of other apparatus, such as the low-pass filters for the DC power supply, and

may save us time later.

We also have a general idea of how the entire Paul trap system, including

the power supplies for the electrodes, the UHV instruments and the imaging

system, will come together (Chapter 3). In terms of power supplies, the helical

resonator we need for generating the RF signal is ready to move on from the

design phase to the construction and testing phase. To do so, we need to

measure the trap capacitance and resistance, which are inputs in finalizing the

geometric parameters in the helical resonator. The minimum steps we need

to take are to install the trap in the vacuum chamber and make the electrical

connections to the RF power feedthrough without creating the UHV just yet.

So in order to construct the RF power supply, we need to develop a surface

cleaning procedure to prepare all the in-vacuum surfaces for UHV environment

before installing the trap for measuring its capacitance and resistance.

Finally, we have thought about our experimental method and how as well

as why it will allow us to observe the time-variation of µ, potentially bet-
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ter than many other methods (Chapter 4). The next important decision we

have to make is perhaps the choice of the diatomic molecular ion to be used

for spectroscopy. We can start by taking a closer look at the rovibrational

transitions in our potential candidate 16O+
2 and evaluate their “usefulness” for

spectroscopy according to the criteria discussed in Section 4.3.

To sum up, there are a number of projects we can undertake simultaneously

in the next few months to come. One of them is to develop the procedure for

surface cleaning and creating the UHV environment. That also involves placing

orders for commercially available parts because some of them may have a lead

time as long as a number of weeks. Once we go ahead and install the trap in the

vacuum chamber (creating the UHV is at the moment optional), we can then

obtain the trap capacitance and resistance we need to finalize our design of the

helical resonator. Meanwhile, we can continue to convince ourselves that 16O+
2

or another diatomic molecular ion is exactly the one we want for quantum logic

spectroscopy. Independent of the two projects mentioned above, some time

and manpower should also be dedicated to searching for an affordable supplier

to custom-make the objective. Finally, if time and resources allow, it may be

worthwhile to numerically model the electric potential produced by the trap

electrodes and thus produce more accurate estimates of secular frequencies.
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Appendix A

Machined Linear Paul Trap

Drawings
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Appendix B

Mathemtica Notebook for

Helical Resonator

The RF Resonator Design NotebookThe RF Resonator Design NotebookThe RF Resonator Design Notebook

This Notebook is used for steps that leads to a complete helical resonaotr

with a desirable RF resonance frequency and a large if nor maximized Q.

There are four steps to complete before you ending up with a functional prod-

uct. All calculations are based on “On the application of radio frequency

voltage to ion traps via helical resonators”, by Siverns et al. (Appl Phys B,

DOI 10.1007/s00340-011-4837-0) Initial inputs are paramters of resonator A

in table 2.

The picture below shows parameters of the resonator.
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Step 1: MesureStep 1: MesureStep 1: Mesure CΣ =CΣ =CΣ = CtCtCt +++ CwCwCw andandand RΣ = Rt +RjRΣ = Rt +RjRΣ = Rt +Rj

CΣ =Ct + Cw: the capaitance of the trap we have built and the capacitance

of the wires connecting the resonator to the trap.

RΣ = Rt +Rj : theresitance of the trap and the resistance of the solder joints.

These numbers need to be measured with the vacuum feedthrough joined to

the trap electrodes, properly grounded with all other in-vacuum circuit com-

ponents.

Ct = 15 ∗ 10∧ − 12;Ct = 15 ∗ 10∧ − 12;Ct = 15 ∗ 10∧ − 12;

Cw = 0.1 ∗ 10∧ − 12;Cw = 0.1 ∗ 10∧ − 12;Cw = 0.1 ∗ 10∧ − 12;

CΣ = Ct + Cw;CΣ = Ct + Cw;CΣ = Ct + Cw;

Rt = 5;Rt = 5;Rt = 5;
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Rj = 0.5;Rj = 0.5;Rj = 0.5;

RΣ = Rt + Rj;RΣ = Rt + Rj;RΣ = Rt + Rj;

Step 2: Calculate the combination {d/D, d} that will maximize the Q of the systemStep 2: Calculate the combination {d/D, d} that will maximize the Q of the systemStep 2: Calculate the combination {d/D, d} that will maximize the Q of the system

d: the diameter of the inside coil of the resonator

D: the diameter of the outside shield

ρ: the resistivity of copper

δ: skin-depth

b[x,d]: the height of the coil as a function of {d/D, d} (x replace d/D in the

calculation below)

This calculation is done given the resonace frequency (ω0 ) we want, the diam-

eter of the wire used for the coil (d0 , typically 5mm) ) and the winding pitch

of the coil (τ , typically 2d0).

In order to get the desirable combination of {d/D, d}, read off from the con-

tour plot the numbers corresponding to maximum Q (or a fairly large Q). We

can them obatin d and D.

d0 = 5 ∗ 10∧ − 3;d0 = 5 ∗ 10∧ − 3;d0 = 5 ∗ 10∧ − 3;

τ = 10 ∗ 10∧ − 3;τ = 10 ∗ 10∧ − 3;τ = 10 ∗ 10∧ − 3;

ω0 = 10 ∗ 10∧6 ∗ 2 ∗ π;ω0 = 10 ∗ 10∧6 ∗ 2 ∗ π;ω0 = 10 ∗ 10∧6 ∗ 2 ∗ π;

ρ = 1.68 ∗ 10∧ − 8;ρ = 1.68 ∗ 10∧ − 8;ρ = 1.68 ∗ 10∧ − 8;

KCs[x , d ]:=39.37 ∗ 0.75/Log[1/x] ∗ 10∧ − 12;KCs[x , d ]:=39.37 ∗ 0.75/Log[1/x] ∗ 10∧ − 12;KCs[x , d ]:=39.37 ∗ 0.75/Log[1/x] ∗ 10∧ − 12;

KLc[x , d ]:=39.37 ∗ (0.025 ∗ d∧2 ∗ (1− x∧2))/τ∧2 ∗ 10∧ − 6;KLc[x , d ]:=39.37 ∗ (0.025 ∗ d∧2 ∗ (1− x∧2))/τ∧2 ∗ 10∧ − 6;KLc[x , d ]:=39.37 ∗ (0.025 ∗ d∧2 ∗ (1− x∧2))/τ∧2 ∗ 10∧ − 6;
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b[x , d ]:= (CΣ + Kcd[x, d])/ (KCs[x, d] + Kcb)∗b[x , d ]:= (CΣ + Kcd[x, d])/ (KCs[x, d] + Kcb)∗b[x , d ]:= (CΣ + Kcd[x, d])/ (KCs[x, d] + Kcb)∗

(Sqrt [(KCs[x, d] + Kcb) /((CΣ + Kcd[x, d]) ∧2 ∗KLc[x, d] ∗ ω0∧2) + 1/4]− 1/2)(Sqrt [(KCs[x, d] + Kcb) /((CΣ + Kcd[x, d]) ∧2 ∗KLc[x, d] ∗ ω0∧2) + 1/4]− 1/2)(Sqrt [(KCs[x, d] + Kcb) /((CΣ + Kcd[x, d]) ∧2 ∗KLc[x, d] ∗ ω0∧2) + 1/4]− 1/2)

Cs[x , d ]:=b[x, d] ∗KCs[x, d]Cs[x , d ]:=b[x, d] ∗KCs[x, d]Cs[x , d ]:=b[x, d] ∗KCs[x, d]

Cc[x , d ]:=b[x, d] ∗Kcb + Kcd[x, d]Cc[x , d ]:=b[x, d] ∗Kcb + Kcd[x, d]Cc[x , d ]:=b[x, d] ∗Kcb + Kcd[x, d]

n[x , d ]:=b[x, d]/τn[x , d ]:=b[x, d]/τn[x , d ]:=b[x, d]/τ

lc[x , d ]:=Sqrt[τ∧2 + (π ∗ d)∧2] ∗ n[x, d]lc[x , d ]:=Sqrt[τ∧2 + (π ∗ d)∧2] ∗ n[x, d]lc[x , d ]:=Sqrt[τ∧2 + (π ∗ d)∧2] ∗ n[x, d]

Ns[x , d ]:=b[x, d] ∗ lc[x, d]/(4 ∗ π ∗ (d/x− d)∧2)Ns[x , d ]:=b[x, d] ∗ lc[x, d]/(4 ∗ π ∗ (d/x− d)∧2)Ns[x , d ]:=b[x, d] ∗ lc[x, d]/(4 ∗ π ∗ (d/x− d)∧2)

ls[x , d ]:=Ns[x, d] ∗ Sqrt[π∧2 ∗ (d/x)∧2 + (b[x, d]/Ns[x, d])∧2]ls[x , d ]:=Ns[x, d] ∗ Sqrt[π∧2 ∗ (d/x)∧2 + (b[x, d]/Ns[x, d])∧2]ls[x , d ]:=Ns[x, d] ∗ Sqrt[π∧2 ∗ (d/x)∧2 + (b[x, d]/Ns[x, d])∧2]

Rs[x , d ]:=Ns[x, d] ∗ ρ ∗ ls[x, d]/(b[x, d] ∗ δ)Rs[x , d ]:=Ns[x, d] ∗ ρ ∗ ls[x, d]/(b[x, d] ∗ δ)Rs[x , d ]:=Ns[x, d] ∗ ρ ∗ ls[x, d]/(b[x, d] ∗ δ)

Rc[x , d ]:=ρ ∗ lc[x, d]/(d0 ∗ π ∗ δ)Rc[x , d ]:=ρ ∗ lc[x, d]/(d0 ∗ π ∗ δ)Rc[x , d ]:=ρ ∗ lc[x, d]/(d0 ∗ π ∗ δ)

a[x , d ]:=Ct/(Cw + Cs[x, d])a[x , d ]:=Ct/(Cw + Cs[x, d])a[x , d ]:=Ct/(Cw + Cs[x, d])

α[x , d ]:=a[x, d]/(a[x, d] + 1)α[x , d ]:=a[x, d]/(a[x, d] + 1)α[x , d ]:=a[x, d]/(a[x, d] + 1)

Resr[x , d ]:=Rs[x, d] + Rc[x, d] + Rj + Rt ∗ α[x, d]∧2Resr[x , d ]:=Rs[x, d] + Rc[x, d] + Rj + Rt ∗ α[x, d]∧2Resr[x , d ]:=Rs[x, d] + Rc[x, d] + Rj + Rt ∗ α[x, d]∧2

Lc[x , d ]:=b[x, d] ∗KLc[x, d]Lc[x , d ]:=b[x, d] ∗KLc[x, d]Lc[x , d ]:=b[x, d] ∗KLc[x, d]

ContourPlot[{Q[x, d]}, {x, 0, 1}, {d, 0, 0.2},AxesLabel→ {“d/D”, d}]ContourPlot[{Q[x, d]}, {x, 0, 1}, {d, 0, 0.2},AxesLabel→ {“d/D”, d}]ContourPlot[{Q[x, d]}, {x, 0, 1}, {d, 0, 0.2},AxesLabel→ {“d/D”, d}]

Step 3: Caculate the coil height b and other parameters and thenStep 3: Caculate the coil height b and other parameters and thenStep 3: Caculate the coil height b and other parameters and then

From b[x,d], by filling in the combination {d/D, d} chosen in step 2. I have

hightlighted the parts that one needs to changes every time a new combination

{d/D, d} is chosen.

We should set the shield height, B, to be b+D/2 (D1 replaces D here as D is

protected by Mathematica).

Q[0.4, 0.07]Q[0.4, 0.07]Q[0.4, 0.07]

b[0.4, 0.07]b[0.4, 0.07]b[0.4, 0.07]
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D1 = 0.07/0.4D1 = 0.07/0.4D1 = 0.07/0.4

B = b[0.4, 0.07] + D1/2B = b[0.4, 0.07] + D1/2B = b[0.4, 0.07] + D1/2

185.338

0.22775

0.175

0.31525

Step 4: Figure out antenna or coupling coil parametersStep 4: Figure out antenna or coupling coil parametersStep 4: Figure out antenna or coupling coil parameters

Zin, the combined impedence of the resonator and the trap, must match that

of the source of RF signal, which is the standard 50 Ω. Solving for La (by

equation (14) in Siverns) gives us some information about the antenna coil

as we can model La by La = µ0NA /τa , where τa is the winding pitch of the

antenna coil, N the number of turns and A the cross-sectional area.

Here we have arbitrarily choosen the diameter of the wire that makes up the

antenna coil, da, to be 3.5 m and N (N1 replace N here) to be 3. Again, for

esay hand-winding, we choose τa to be twice da.

k is the coupling constant, which is in the range of 0∼1. Here we assume it to

be 0.1.

Notice that I have modeled ZL, the impedance of the load, after the ciruicuit

analysis in section 3.2 of Siverns et al. For details, see lab log page 41.

The number calculated in the end is the diameter of the coupling coil that will

impedance match the source and the load, which consists of the resonator and

the trap.

N1 = 3;N1 = 3;N1 = 3;

da = 3.5 ∗ 10∧ − 3;da = 3.5 ∗ 10∧ − 3;da = 3.5 ∗ 10∧ − 3;
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τa = 2 ∗ da;τa = 2 ∗ da;τa = 2 ∗ da;

Xc[x ]:=1/(x ∗ ω0);Xc[x ]:=1/(x ∗ ω0);Xc[x ]:=1/(x ∗ ω0);

XL[x ]:=ω0 ∗ x;XL[x ]:=ω0 ∗ x;XL[x ]:=ω0 ∗ x;

Zt[x , d ]:=(1/(i ∗ Xc[Ct] + Rt) + 1/(i ∗ Xc[Cw]) + 1/(i ∗ Xc[Cs[x, d]]))∧ − 1 + Rj + Rs[x, d];Zt[x , d ]:=(1/(i ∗ Xc[Ct] + Rt) + 1/(i ∗ Xc[Cw]) + 1/(i ∗ Xc[Cs[x, d]]))∧ − 1 + Rj + Rs[x, d];Zt[x , d ]:=(1/(i ∗ Xc[Ct] + Rt) + 1/(i ∗ Xc[Cw]) + 1/(i ∗ Xc[Cs[x, d]]))∧ − 1 + Rj + Rs[x, d];

ZL[x , d ]:=(1/Zt[x, d] + 1/(i ∗ Xc[Cc[x, d]]))∧ − 1 + Rc[x, d];ZL[x , d ]:=(1/Zt[x, d] + 1/(i ∗ Xc[Cc[x, d]]))∧ − 1 + Rc[x, d];ZL[x , d ]:=(1/Zt[x, d] + 1/(i ∗ Xc[Cc[x, d]]))∧ − 1 + Rc[x, d];

k = 0.1;k = 0.1;k = 0.1;

Soln = Solve[x ∗ Abs[(i ∗ ω0 + k∧2 ∗ Lc[0.4, 0.07] ∗ ω0∧2/(i ∗ ω0 ∗ Lc[0.4, 0.07] + ZL[0.4, 0.07]))] == 50,Soln = Solve[x ∗ Abs[(i ∗ ω0 + k∧2 ∗ Lc[0.4, 0.07] ∗ ω0∧2/(i ∗ ω0 ∗ Lc[0.4, 0.07] + ZL[0.4, 0.07]))] == 50,Soln = Solve[x ∗ Abs[(i ∗ ω0 + k∧2 ∗ Lc[0.4, 0.07] ∗ ω0∧2/(i ∗ ω0 ∗ Lc[0.4, 0.07] + ZL[0.4, 0.07]))] == 50,

x];x];x];

La = (x/.Soln[[1]]);La = (x/.Soln[[1]]);La = (x/.Soln[[1]]);

µ0 = 1.25663706 ∗ 10∧ − 6;µ0 = 1.25663706 ∗ 10∧ − 6;µ0 = 1.25663706 ∗ 10∧ − 6;

A = La/(µ0 ∗ N1) ∗ τa;A = La/(µ0 ∗ N1) ∗ τa;A = La/(µ0 ∗ N1) ∗ τa;

Sqrt[A/π] ∗ 2Sqrt[A/π] ∗ 2Sqrt[A/π] ∗ 2

0.0434833

Final Step: Build resonator, test, and adjust.Final Step: Build resonator, test, and adjust.Final Step: Build resonator, test, and adjust.

Rules of thumb

- If resonance frequency is too large, we may be able to tune it by streching

the coil length (how ever this effect of streching may be canceled out by the

increase in winding pitch of the coil. We will see by experimenting.).

- Larger wire diameter for making the coil tends to lead to larger Q.

- If impedance of load (trap + resonator) is too high compared to RF source,

strech the antenna coil to increase its winding pitch and reduces the load

impedance. If otherwise, do the opposite.
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Appendix C

Inventory for Vacuum System
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No. Part
1 Vacuum chamber, Kimball Physics MCF800-SphOct-G2C8
2 2.75′′ CF viewport, Kimball Physics or Kurt J. Lesker or Nor-Cal
3 8′′ CF viewport, Kimball Physics or Kurt J. Lesker or Nor-Cal
4 CF flange with multi-pin connector, Kurt J. Lesker IFDGG501056B
5 Full nipple, Kurt J. Lesker FN-0275S
6 CF multiplexer, Kimball Physic MCF275-FlgMplxr-C1r1A4
7 Ion pump, Agilent VacIon Plus 40-75
8 RF power feedthrough, Kurt J. Lesker FTT1023253
9 Helical resonator, “home-made”
10 Camera, Andor iXon3-885 DU-885K-CS0-#VP
11 Objective, custom-made
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