Toward Measurements With Sympathetically Cooled State-Selected Molecular Ions
Ryan A. Carollo, David A. Lane, Alexander Frenett, David Hanneke
Department of Physics \& Astronomy, Amherst College, Amherst, MA 01002

Quantum logic spectroscopy

Leveraging quantum information processing techniques for precision measurement

Atomic logic ion provides all
dissipation
Target ion has an interesting spectroscopic transition

General procedure

- Co-trap ions
- External state preparation
(sympathetic cooling)
Internal state preparation
(quantum projection)
Spectroscopy probe of target ion
State detection (non-destructive)
Our interest: molecules
- Quantum control of rotation states

Rotation spectroscopy
Quantum memory
Tests of molecular quantum theory
Time variation of fundamental
Symmetry tests (P, T)

Variation of Constants

The three lowest electronic states of $\mathrm{O}_{2}{ }^{+}$

Deeply bound diatomic molecular ions are of interest for a variety of studies, such as precision measurements, quantum control of rotational states, or quantum memory. We are particularly interested in homonuclear systems, which show promise at suppressing certain systematic effects. We present an apparatus capable of controllably leaking O_{2}, ionizing and sympathetically cooling trapped $\mathrm{O}_{2}{ }^{+}$, and performing state-selective photoionization. We report on progress toward initial measurements with oxygen, and discuss a proposed precision measurement of the time variation of the proton-toelectron mass ratio using trapped $\mathrm{O}_{2}{ }^{+}$

Loading $\mathrm{O}_{2}{ }^{+}$

We have successfully leaked O_{2} into the trap and ionized by electron impact. The image series at right shows O_{2}^{+}
(and possibly O^{+}) in a crystal with (and possibly O^{+}) in a crystal with Be. The dark ions are idenilied by to make the trap unstable in a massselective way.

In the future, we will state selectively load $\mathrm{O}_{2}{ }^{+}$by photoionization. Úsing a doubled pulsed dye laser, two 296.5-303.5 nm photons excite from the ground $X^{3} \Sigma_{g}$ - state to the $d^{1} \Pi_{g}$ state. An extra photon excites to the ion $X^{2} \Pi_{g}$ state, preserving plots showing the X-to- d excitation spectra at excitation spectra a 5 K , as in a pulsed beam

313 nm Be ${ }^{+}$Laser

Lasers

Triple 939 nm diode laser to 313 nm (second-harmonic generation followed by sum-frequency generation)

- Up to 36 mW of power at 313 nm
- 10% power stability over 12 hours - 3\% short-term stability - Optics Express 25, 7220 (2017)

Computer control - Quantum Logic Ion Control (QLIC) python scripting language
LabVIEW GUI

- Controls main sequencer (digital outputs), DDSes, analog outputs, PMT input

The apparatus

UHV chamber with laser, imaging, and electrical access

- Beryllium wire ovens
- Precision leak valve for gas introduction - Electron emitter for impact ionization of beryllium and background gas - Trap parameters: $r_{0}=1.2 \mathrm{~mm}, z_{0}=1.5 \mathrm{~mm}$ $\Omega_{\mathrm{rf}}=2 \pi(35 \mathrm{MHz})$

Acknowledgments
Many undergraduate students have contributed to this work. In the past year, we
have been aided by Christian Pluchar Lauren have been aided by Christian Plu
Weiss, and Marissa Radensky.

This work has been funded by the National Science Foundation (CAREER, PHY
1255170) and the Amherst College Dean of 1255170)
the Faculty.

For more information, visit

