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Abstract. We consider Apollonian circle packings of a half Euclidean plane. We give necessary
and sufficient conditions for two such packings to be related by a Euclidean similarity (that is, by
translations, reflections, rotations and dilations) and describe explicitly the group of self-similarities
of a given packing. We observe that packings with a non-trivial self-similarity correspond to positive
real numbers that are the roots of quadratic polynomials with rational coefficients. This is reflected
in a close connection between Apollonian circle packings and continued fractions which allows us
to completely classify such packings up to similarity.

1. Introduction

A circle packing in R2 is a set of circles in the plane whose interiors (suitably interpreted) are
mutually disjoint. An Apollonian circle packing P has the property that for any three mutually
tangent circles in P, the two circles in the plane that are tangent to all three of them also lie in P.
Note that our notion of circle includes straight lines where we consider parallel lines to be tangent
at infinity.

These types of circle packing have been extensively studied by Graham, et al [3, 4, 5, 6], with a
focus on those packings for which all the circles have integer curvatures.

There are four basic shapes that an Apollonian packing may take, and these are illustrated in
Figure 1. A bounded Apollonian packing (Figure 1(a)) is a packing P for which a single circle in
P bounds the entire packing. Here the ‘interior’ of the bounding circle is the unbounded component
of its complement.

A half-plane packing (Figure 1(b)) is an Apollonian packing P for which at least one of its circles
is a straight line. The line partitions the plane into two half-planes: one is ‘packed’ by P, while
the other is the ‘interior’ of the line.

A strip packing (Figure 1(c)) is a half-plane packing P for which two of the circles in P are parallel
lines. The other circles in P lie in the strip between them.

An unbounded packing (Figure 1(d)) is an Apollonian packing which contains no bounding circle
and no straight line.

Stereographic projection allows us to relate circle packings in the plane to those on the sphere.
The four possible configurations in Figure 1 correspond to projection from (a) an interior point,
(b) a point on only one circle, (c) a tangency point, and (d) a point not on or inside any circle,
respectively.

In this paper, we consider the similarity relation on Apollonian circle packings. A similarity is
a transformation of the Euclidean plane that preserves ratios of lengths. Such a transformation is
necessarily a composite of a translation, rotation, reflection and/or dilation. Two packings P and
P ′ are similar if there is a similarity of the plane that takes circles in P bijectively to circles in P ′.

Research for this paper was supported by NSF VIGRE grant DMS-0738586.
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(a) Bounded (b) Half-plane

(c) Strip (d) Unbounded

Figure 1. Different boundedness properties for Apollonian packings.

There may be non-trivial similarities from P to itself, in which case we say that P is self-similar
and we consider its group of self-similarities.

Our results concern only half-plane packings. We give a necessary and sufficient condition for two
such packings to be similar, a classification of the self-similar packings, and a description of all of
the self-similarity groups.

We also answer the more specific question of whether two packings are similar via an orientation-
preserving similarity (that is, one with positive determinant) or via an orientation-reversing
similarity. Our classification tells us which packings possess an orientation-reversing self-similarity.

We observe that any half-plane packing P is similar to a packing containing three circles in the
configuration shown in Figure 2, where L is the x-axis, and α2 and 1 refer to the curvatures of the
circles they label. For α > 0, we define Pα to be the unique Apollonian circle packing containing
that configuration. Because each packing P is similar to such a packing, we restrict our attention
to studying the packings Pα, and we state results in terms of this particular class of packings.

Theorem 1.1. Let α, β > 0. There is a bijection between the set of similarities preserving the

x-axis that map Pβ to Pα and the set of matrices
[
a b
c d

]
∈ PGL2(Z) such that

aα+ b

cα+ d
= β. The

similarity is orientation-preserving if and only if the determinant of the corresponding matrix is
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α2

1

(0, 0)

L

Figure 2. The generating triple for the packing Pα. The numbers α2 and 1 repre-
sent the curvatures of their respective circles, and L is a straight line.

+1. In particular, Pα and Pβ are similar (resp. similar via an orientation-preserving similarity)

if and only if there exist integers a, b, c, d, with ad− bc = ±1 (resp. +1), such that
aα+ b

cα+ d
= β.

Taking α = β in Theorem 1.1 helps us to calculate the self-similarity groups. We write Symm(P) for
the self-similarity group of the packing P, and we write Symm+(P) for the subgroup of Symm(P)
consisting of orientation-preserving self-similarities of P.

Theorem 1.2. Let α > 0. Then:

(i) If α ∈ Q, then Pα is a strip packing and

Symm(Pα) ∼= D∞ × Z/2Z
with subgroup

Symm+(Pα) ∼= D∞.

(ii) If α is quadratic over Q, then

Symm(Pα) ∼= Z.
Let D denote the discriminant of the primitive integral polynomial with root α. Then the
subgroup Symm+(Pα) is:
• equal to Symm(Pα) if the Pell equation x2 − Dy2 = −4 has no integral solution for

(x, y);
• the index 2 subgroup of Symm(Pα) if x2 −Dy2 does have an integral solution.

(iii) Otherwise
Symm+(Pα) = Symm(Pα) = 1.

As one might imagine from the form of Theorem 1.2, there is a striking connection between half-
plane Apollonian circle packings and continued fractions which we describe in §4. In particular, we
have the following result.

Theorem 1.3. Let α, β > 0. The packings Pα and Pβ are similar if and only if the continued
fraction expansions of α and β are eventually equal (that is, become equal when initial segments, of
possibly different lengths, are removed from each).

As a consequence of Theorem 1.3, we obtain the following classification of the self-similar half-plane
packings.



4 MICHAEL CHING AND JOHN R. DOYLE

Theorem 1.4. The similarity classes of self-similar half-plane (non-strip) packings are in a one-
to-one correspondence with the finite, non-repeating sequences of positive integers, up to cyclic
permutations. Here “non-repeating” means that the sequence cannot be realized as a concatenation
of multiple copies of a shorter sequence. The packing has an orientation-reversing self-similarity if
and only if the length of the corresponding sequence is odd.

In Figures 11-14, at the end of the paper, we show the self-similar half-plane packings corresponding
to the sequences (1), (2), (3) and (1, 2).

Here is a quick outline. In §2 we give a precise definition of Apollonian circle packings and establish
some of their basic properties. The main part of that section is then to describe a labelling system
for the circles in a half-plane packing that are tangent to the x-axis. In §3 we relate those labels
to the curvatures of the circles and use this relationship to prove Theorems 1.1 and 1.2. In §4 we
examine the connection between half-plane packings and continued fractions which we use to prove
Theorems 1.3 and 1.4.

Acknowledgements. This project grew out of a VIGRE Research Group on Circle Packings at the
University of Georgia. We would like to thank Sa’ar Hersonsky for his leadership and suggestions.
Michael Berglund and Chris Pryby were involved in much of the initial work on the project and
this paper would not exist without their contributions. Other members of the group, including
Jennifer Belton, provided useful feedback.

2. Apollonian Circle Packings

We begin with a precise definition of an Apollonian circle packing.

Definition 2.1. For the purposes of this paper, a circle in R2 is either a circle or a straight line,
together with a choice of one of the components of its complement which we refer to as the interior
of the circle. Note that what we refer to as the interior of a circle may be the unbounded component
of its complement, and the interior of a straight line is one of the two half-planes it determines.

An Apollonian circle packing is a collection P of circles in R2 with disjoint interiors such that

(i) there exists a set of three mutually tangent circles in P;
(ii) if a circle C is tangent to three mutually tangent circles that are in P, then C is also in P.

An Apollonian circle packing can be constructed recursively in the following way.

Definition 2.2. Let P(0) be a set of three mutually tangent circles in R2 with disjoint interiors.
Given P(n), we define P(n+1) to be the set of circles in R2 consisting of P(n) together with any
circle that is tangent to three mutually tangent circles in P(n). The Apollonian circle packing
generated by P(0) is

P :=

∞⋃
n=0

P(n)

It can be seen by an induction argument that the circles in P(n) have disjoint interiors, and it
follows that P is an Apollonian circle packing in the sense of Definition 2.1.

Note that a theorem of Apollonius says that for three mutually tangent circles in R2 with disjoint
interiors, there are precisely two other circles tangent to all three. Each of these two circles lies in
an interstice formed by the original three circles. See Figure 3.
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Definition 2.3. Let A, B, and C be three mutually tangent circles in R2 with disjoint interiors.
The complement of A ∪ B ∪ C in R2 consists of five components — three of the components are
the interiors of the respective circles, and the other two are called the interstices formed by A, B,
and C.

Figure 3. The two dashed circles lie in the interstices bounded by the three solid circles.

Lemma 2.4. Let P be an Apollonian circle packing. Then P is generated, in the sense of Definition
2.2, by any set of three mutually tangent circles in P.

Corollary 2.5. If P and P ′ are two Apollonian packings with a common triple of mutually tangent
circles, then P = P ′. �

Proof of Lemma 2.4. Since P certainly contains the packing generated by any set P(0) of three
mutually tangent circles, it is sufficient to show that there is no room for any other circles. In
particular, this will be true if the complement of the set of interiors of circles in P (called the
residual set of P) has Lebesgue measure zero. A proof of this fact may be found in [4, Theorem
4.2]. �

For us, the point of the recursive construction of Apollonian circle packings is that some of our
arguments proceed by induction on the stage at which the circles are created in this process. We
therefore make the following definition.

Definition 2.6. Fix a generating triple P(0) for the packing P. The generation of a circle C ∈ P
(with respect to P(0)), denoted by gen(C), is the unique n ∈ Z≥0 such that C ∈ P(n) \ P(n−1).
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We now narrow our focus to half-plane packings. Let P be a half-plane packing, that is, a packing
that contains at least one line L. We assume that L coincides with the x-axis and that the remaining
circles in P are in the upper-half plane. (Any half-plane packing is similar to one that satisfies this
condition.)

Definition 2.7. Most of our analysis of half-plane packings can be done be focusing on the circles
in P that are tangent to the line L. We define

PL := {C ∈ P | C is tangent to L}.
The ‘mutually disjoint interiors’ requirement of circle packings ensures that no two circles in PL
may be tangent to L at the same point. This property allows us to define a total ordering on the
set PL. We say that C is to the left of C ′, or C ≺ C ′, if the x-coordinate of the point of tangency
between C and L is less than the x-coordinate of the point of tangency between C ′ and L. In
the case that P is a strip packing, with L′ the line in P which is parallel to L, we consider the
x-coordinate of the point of tangency between L′ and L to be −∞; in other words, L′ ≺ C for all
C ∈ PL with C 6= L′.

Definition 2.8. Let X and Y be two tangent circles in PL, neither of which is a line. Then
{X,Y, L} is a triple of mutually tangent circles in R2 and therefore determines two interstices in
the plane. One interstice is bounded, and the other is unbounded; we refer to these as the bounded
interstice for X and Y and the unbounded interstice for X and Y respectively. We say that
the circle C fills the bounded (resp. unbounded) interstice for X and Y if C is the unique
circle in the bounded (resp. unbounded) interstice for X and Y which is tangent to X, Y , and L
(see Figure 4). Note that, by Definition 2.1, C necessarily lies in P and hence also PL.

Remark. No circle in the bounded interstice for X and Y can be tangent to a circle in the unbounded
interstice for X and Y .

A

B

L

Figure 4. The larger dashed circle fills the unbounded interstice for A and B, and
the smaller dashed circle fills the bounded interstice.

By Lemma 2.4 we can view the packing P as generated by the triple {X,Y, L} in the sense of
Definition 2.2 for any pair of tangent circles X,Y ∈ PL. For the remainder of this section, we fix a
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choice of X and Y and assume that X ≺ Y , that is, X is to the left of Y . We also assume that X
and Y are actual circles, i.e., neither is a line.

Definition 2.9. It is convenient to divide up the circles in PL according to which interstice they
are contained in. We define

P+
L = {C ∈ PL | X � C � Y }

and
P−L = {C ∈ PL | C � X or Y � C}.

Geometrically, P+
L consists of X, Y , and those circles in PL that are in the bounded interstice for

X and Y , while P−L consists of X, Y , and those circles in PL that are in the unbounded interstice

for X and Y . Note that P+
L ∪ P

−
L = PL and P+

L ∩ P
−
L = {X,Y }.

Lemma 2.10. For each circle C ∈ P+
L , C 6∈ {X,Y }, there exist circles A and B in P+

L of
generation strictly less than that of C such that C fills the bounded interstice for A and B. (Recall
that the generation of a circle in a packing P depends on a choice of generating triple; in this case,
P(0) = {X,Y, L}.)

Proof. We work by induction on the generation of C. If C is generation 1, then it must be the
circle that fills the bounded interstice between X and Y , so satisfies the lemma. Now suppose that
gen(C) ≥ 2. Thinking about when the circle C is added to the packing in the recursive construction
of Definition 2.2, we see that there are exactly three circles, of generation less than C, that are
tangent to C. One of these circles must be the line L, so let A and B be the other two. It follows
from the remark after Definition 2.8 that A,B ∈ P+

L . Now C fills one of the interstices formed by
A and B. We need to show that it fills the bounded interstice.

Now exactly one of A and B must be of generation exactly one less than C. Suppose this is B. By
the induction hypothesis, B fills the bounded interstice formed by two other circles of generation
less than it. One of those must be A and let the other be D. But now we see that D fills the
unbounded interstice for A and B. Since gen(D) < gen(B) < gen(C), we cannot have D = C. It
follows then that C must fill the bounded interstice for A and B. �

Our main tool for keeping track of the circles in a half-plane packing P is a labelling for each circle
in PL by a pair of integers (a, b). The remainder of this section is devoted to the construction and
properties of this labelling. In §3 we relate this labelling to the curvatures of the circles in P and
use it to deduce information about similarities between different packings.

Definition 2.11. We define a labelling function ~x = (x, y) : PL → Z2. We define the labelling
recursively starting with ~x(X) = (1, 0) and ~x(Y ) = (0, 1). For the remaining circles in PL, the label
is determined by the following rule:

If C is the circle that fills the bounded interstice for A and B, then

(2.12) ~x(C) = ~x(A) + ~x(B).

At each stage of the construction of the packing from its generators, X, Y , and L, a new circle
in PL fills either the bounded or unbounded interstice for a pair of circles already present. The
equation above determines a label for each such new circle — see Figure 5.

The main result of this section, Proposition 2.21, tells us that the labelling function ~x is one-to-one
and that for each pair (a, b) of coprime integers, exactly one of (a, b) and (−a,−b) is in the image
of ~x. It also gives us a necessary and sufficient condition on the labels for two circles in PL to be
tangent. It is convenient to start with this condition, which is stated in terms of the matrix formed
by the labels of the two circles.
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(a, b)
(c, d)

(a+ c, b+ d)
↑

Figure 5. The relationship satisfied by the labels.

Lemma 2.13. Let A and B be a pair of tangent circles in PL such that A ≺ B. Then∣∣∣∣x(A) y(A)
x(B) y(B)

∣∣∣∣ = 1.

Proof. The proof will be by induction on gen{A,B} := max{gen(A), gen(B)}. The base case is
immediate: the generation zero circles form the pair {X,Y }, which are labeled (1, 0) and (0, 1)
respectively. The corresponding matrix is the identity, which has determinant 1.

Now suppose gen{A,B} = n ≥ 1. First, observe that we cannot have gen(A) = gen(B) = n:
if gen(A) = gen(B) = n ≥ 1, then A and B were constructed to fill two disjoint interstices in

P(n−1) and cannot therefore be tangent. Hence {A,B} contains a unique circle of generation n.

Furthermore, because a generation n circle is constructed to fill a single interstice in P(n−1), it is
necessarily tangent to exactly three circles of generation strictly less than n. Therefore the circle
of generation n (either A or B) is tangent to L (generation zero), the circle in {A,B} of smaller
generation, and a third circle C of generation strictly less than n.

There are three possibilities for the position of C relative to A and B: C can be to the left of both,
to the right of both, or between the two. Moreover, the generation n circle can be either A or
B, so there are a total of six cases to consider. We only give the proof in two cases — the other
four are nearly identical. To prove them, we use the fact that the matrix row operations of row
addition/subtraction are determinant-preserving and that switching two rows switches the sign of
the determinant. In each case, the final equality holds by the induction hypothesis.

Case 1: Suppose C ≺ A ≺ B and gen(B) = n. Then ~x(A) = ~x(C) + ~x(B), and∣∣∣∣~x(A)
~x(B)

∣∣∣∣ =

∣∣∣∣ ~x(A)
~x(B)− ~x(A)

∣∣∣∣ =

∣∣∣∣ ~x(A)
−~x(C)

∣∣∣∣ = −
∣∣∣∣−~x(C)
~x(A)

∣∣∣∣ =

∣∣∣∣~x(C)
~x(A)

∣∣∣∣ = 1.

Case 2: Suppose A ≺ C ≺ B and gen(A) = n. Then ~x(C) = ~x(A) + ~x(B), and∣∣∣∣~x(A)
~x(B)

∣∣∣∣ =

∣∣∣∣~x(A) + ~x(B)
~x(B)

∣∣∣∣ =

∣∣∣∣~x(C)
~x(B)

∣∣∣∣ = 1.

�

Corollary 2.14. For any circle C ∈ PL, gcd(x(C), y(C)) = 1. �

We now begin the proof that our labelling function ~x is one-to-one. We do this first for those circles
in the bounded interstice for X and Y .

Lemma 2.15. For C ∈ P+
L we have x(C), y(C) ≥ 0 with equality only if either C = X or C = Y .



APOLLONIAN CIRCLE PACKINGS OF THE HALF-PLANE 9

Proof. This follows from (2.12) by induction on generation since, by Lemma 2.10, the circle C fills
the bounded interstice of two circles of strictly smaller generation than it. �

Corollary 2.14 and Lemma 2.15 tell us that every circle in P+
L is labeled by a pair of nonnegative

coprime integers. We now prove that every such pair is the label of a unique circle in P+
L . At the

same time, we prove the converse of Lemma 2.13 for P+
L — that if circles A,B ∈ P+

L have the
determinant of the matrix formed by their labels equal to 1, then they are tangent with A ≺ B.
We first need the following elementary lemma.

Lemma 2.16. Let a and b be positive, coprime integers. Then there exist unique integers u and v
that satisfy the following properties:

(i) au− bv = 1,
(ii) 0 < u ≤ b, and
(iii) 0 ≤ v < a.

Proof. Because a, b are coprime, we can find an integer solution (x, y) to the equation

(2.17) ax− by = 1.

Given a particular solution (x0, y0) to (2.17), the entire solution set is

{(x, y) = (x0 + kb, y0 + ka) : k ∈ Z}.

There is then a unique k ∈ Z such that 0 < x0 + kb ≤ b. Let u := x0 + kb. Then u satisfies
property (ii). Setting v := y0 + ka, property (i) is also satisfied, and property (iii) is a consequence
of properties (i) and (ii). �

Lemma 2.18. Let
[
a b
c d

]
be a determinant 1 matrix with nonnegative integer coefficients. Then

there exist unique circles C,C ′ ∈ P+
L such that ~x(C) = (a, b) and ~x(C ′) = (c, d). Moreover, C and

C ′ are tangent with C ≺ C ′.

Proof. The proof is by induction on max{a + b, c + d}. If max{a + b, c + d} = 1, then the matrix[
a b
c d

]
is necessarily the identity matrix

[
1 0
0 1

]
. By Lemma 2.15, all circles in P+

L different from

X and Y must have a + b > 1, so there can be no circles in P+
L , other than X and Y , labeled by

the pairs (1, 0) and (0, 1).

Once we have proved that there is a unique circle with label (a, b), we denote that circle by C(a,b).
At this point, therefore, we can write C(1,0) = X and C(0,1) = Y .

Now fix an integer n > 1 and suppose we have proved the lemma, and hence constructed the circles
C(a,b) and C(c,d), for any a, b, c, d as in the statement of the lemma with max{a + b, c + d} < n.
Take a, b, c, d with max{a+ b, c+ d} = n.

First of all, if a+ b = c+ d, then

ad− bc = 1 =⇒ d(a+ b)− b(c+ d) = 1

=⇒ (d− b)(a+ b) = 1

=⇒ d− b = a+ b = ±1.

However, since a and b are assumed to be nonnegative, we must have a+ b = 1; since a+ b = c+ d,
this contradicts the fact that max{a+ b, c+ d} > 1. So we have that a+ b > c+ d or a+ b < c+ d.
We will prove the lemma only in the case where a + b > c + d, as the proof of the case where
a+ b < c+ d is virtually identical.
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Since a + b > c + d ≥ 1, we have that 0 < (a − c) + (b − d) < a + b. It follows that the matrix[
a− c b− d
c d

]
satisfies

max{(a− c) + (b− d), c+ d} < a+ b = n.

Since the matrix
[
a− c b− d
c d

]
is the result of a determinant-preserving row operation applied to[

a b
c d

]
, namely the subtraction of the second row from the first, it also has determinant one. Now

we must show that a − c ≥ 0 and b − d ≥ 0 so that our new matrix satisfies the conditions of the
lemma.

Since a+ b > c+ d, we must necessarily have a > c or b > d. If a > c > 0, then

ad− bc = 1 =⇒ cd < bc+ 1

=⇒ cd ≤ bc
=⇒ d ≤ b.

Note that if c = 0, then ad = 1, so a = d = 1. It follows from the fact that a + b > c + d that
b ≥ 1 = d.

Similarly, if b > d > 0, then

ad− bc = 1 =⇒ ad > dc+ 1

=⇒ ad > dc

=⇒ a > c.

(We cannot have d = 0, since that would force bc = −1, which would contradict the fact that
b, c ≥ 0.)

Therefore it must be the case that a − c ≥ 0 and b − d ≥ 0. The induction hypothesis then tells
us that there are unique circles C(a−c,b−d) and C(c,d) in P+

L satisfying ~x(C(a−c,b−d)) = (a− c, b− d)
and ~x(C(c,d)) = (c, d) and that, moreover, these circles are tangent with C(a−c,b−d) ≺ C(c,d).

Now let C be the circle that fills the bounded interstice for C(a−c,b−d) and C(c,d). Then

~x(C) = (a− c, b− d) + (c, d) = (a, b).

We have now shown that there exists a circle labeled by the pair (a, b). The circle C is necessarily
to the left of and tangent to C(c,d).

Finally, we must show that C is the only circle in P+
L that satisfies ~x(C) = (a, b). Suppose C ′′ is

a circle with ~x(C ′′) = (a, b). By Lemma 2.10, C ′′ fills the bounded interstice for two circles A and
B (with, say, A ≺ B) in P+

L . Then ~x(C ′′) = ~x(A) + ~x(B). Write ~x(B) = (v, u). It follows that

~x(A) = (a− v, b− u). Since A and B are both in P+
L , Lemma 2.15 tells us that each of v, u, a− v,

and b− u is nonnegative. Thus 0 ≤ u ≤ b and 0 ≤ v ≤ a.
We must show further that u 6= 0 and v 6= a. We know from Lemma 2.15 that the only circle in
P+
L whose label is (v, 0) for some v is the circle X = C(1,0). However, X � C ′′ ≺ B, so we cannot

have u = 0. A similar argument involving Y = C(0,1) shows that a−v 6= 0, and so v 6= a. Therefore
0 < u ≤ b and 0 ≤ v < a, which are precisely properties (ii) and (iii) from Lemma 2.16. That
property (i) is satisfied follows by Lemma 2.13, since C ′′ is tangent to and to the left of B.

Lemma 2.16 states that conditions (i), (ii), and (iii) uniquely determine (v, u) and hence also
(a − v, b − u). By construction, (c, d) satisfies conditions (i),(ii), and (iii), and so we conclude
that v = c and u = d. By the uniqueness of C(a−c,b−d) and C(c,d) determined previously, we have
A = C(a−c,b−d) and B = C(c,d), and it follows that C ′′ = C. Therefore there is a unique circle C(a,b)

such that ~x(C(a,b)) = (a, b), and we have shown that it is tangent to and left of the circle C(c,d). �
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Definition 2.19. Lemma 2.18 implies that any pair (a, b) of coprime nonnegative integers is the
label of a unique circle in P+

L . As in the proof of Lemma 2.18, we denote that circle by C(a,b).

Lemma 2.18 yields a complete understanding of the labels of circles in P+
L . We now define an

operation which maps P+
L bijectively onto P−L , and use this to relate the labels of circles in P−L to

those of circles in P+
L .

Let C be the unique circle which contains the three points of tangency among C(1,0), C(0,1), and L.
(See Figure 6.) Define a map

ι : R2 ∪ {∞} → R2 ∪ {∞}

to be inversion with respect to C.

C(1,0)

C(0,1)

C

L

Figure 6. The inversion circle C

Let us pause to mention some of the relevant properties of C and the map ι. Note that when we
say that ι fixes a particular circle or set of circles, we mean only as sets in R2, not pointwise.

(i) Inversion with respect to a circle is a bijection of order two; i.e., ι ◦ ι = id.
(ii) As with any Möbius transformation, ι maps Apollonian packings to Apollonian packings.
(iii) C intersects each of C(1,0), C(0,1), and L orthogonally, and therefore ι fixes each of these

three circles. Therefore, by property (ii) and Corollary 2.5, ι fixes P (and hence PL since
L is fixed).

(iv) The interior of C contains the bounded interstice for C(1,0) and C(0,1), and the exterior of
C contains the unbounded interstice for C(1,0) and C(0,1). Since ι maps the interior of C to

the exterior of C, and vice versa, and since property (iii) holds, it follows that ι maps P+
L

to P−L and vice versa.

Because C intersects L orthogonally, the center of C lies on L. It makes sense, then, to talk about
a circle C ∈ PL lying to the left or right of C, by which we mean that the point of tangency of C
with L lies to the left or right of the center of C. We now record two more properties of C and ι:

(v) If C lies to the left (resp. right) of C, then ι(C) also lies to the left (resp. right) of C.
Furthermore, if C ≺ C ′ both lie to the left (resp. right) of C, then ι(C ′) ≺ ι(C) both lie to
the left (resp. right) of C.

(vi) C contains the center of C (that is, the point of tangency between C and L is precisely the
center of C) if and only if ι(C) is a line parallel to L.
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As mentioned above, the reason for introducing the inversion map ι is to set up a one-to-one
correspondence between P+

L and P−L . The following lemma establishes the connection between the

labels of circles in P−L and their images under ι, which lie in P+
L .

Lemma 2.20. Let C ∈ P−L , and let C(a,b) = ι(C) ∈ P+
L be the image of C under the map ι. Then

~x(C) =

{
(a,−b) if C � C(1,0)

(−a, b) if C(0,1) � C
.

Proof. We will prove the statement by induction on the generation of ι(C). In the case that
gen(ι(C)) = 0, we have ι(C) = C(1,0) or ι(C) = C(0,1). Since C(1,0) and C(0,1) are fixed by ι (and
since ι is one-to-one), it follows that C = C(1,0) or C = C(0,1), and in both cases the statement
holds.

Now suppose gen(ι(C)) ≥ 1. Then, since C(a,b) = ι(C) lies in P+
L and is not equal to C(1,0) or C(0,1),

Lemma 2.10 tells us that C(a,b) fills the bounded interstice for two circles C(a1,b1), C(a2,b2) ∈ P
+
L

with gen(C(a1,b1)), gen(C(a2,b2)) < gen(C(a,b)). Assume that C(a1,b1) ≺ C(a2,b2). By definition,
(a1, b1) + (a2, b2) = (a, b). Because inversion preserves tangencies, the circles A = ι(C(a1,b1)) and
B = ι(C(a2,b2)) are tangent to each other as well as to C and L.

There are a total of seven cases to consider, each corresponding to the position of the center of C
with respect to the points of tangency of the circles C(a,b), C(a1,b1), and C(a2,b2) with the line L. We
will prove the result for two example cases; the proofs in the other cases are quite similar.

Case 1: Suppose that the center of C lies between the points of tangency of C(a1,b1) and C(a,b)

with L, as shown in Figure 7. In particular, C(a1,b1) is to the left of C and C(a,b) ≺ C(a2,b2) are to
the right. By property (v) above, we may conclude that A is to the left of C and B ≺ C are to the
right of C. Because all three of the image circles necessarily lie in P−L , it follows that A � C(1,0)

and C(0,1) � B ≺ C.

By the induction hypothesis, we know that ~x(A) = (a1,−b1) and ~x(B) = (−a2, b2). Since A ≺ B ≺
C, it follows that ~x(A) + ~x(C) = ~x(B), and so

~x(C) =
(
− (a1 + a2), b1 + b2

)
= (−a, b).

C(1,0) C(0,1)

C

↑
C(a,b)

C(a1,b1)

↖
C(a2,b2)

L
Figure 7. Case 1 of Lemma 2.20. The point on the line L represents the center of C.
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Case 2: Suppose that the center of C coincides with the point of tangency between C(a,b) and L,
as shown in Figure 8. Then A � C(1,0), C(0,1) � B, and C is a line parallel to L, which means that
C is to the left of every circle in PL. By induction, we have ~x(A) = (a1,−b1) and ~x(B) = (−a2, b2).
Since C ≺ A ≺ B, we have ~x(A) = ~x(C) + ~x(B). It follows that

~x(C) =
(
a1 + a2,−(b1 + b2)

)
= (a,−b).

C(1,0) C(0,1)

C

↑
C(a,b)

C(a1,b1) C(a2,b2)

L
Figure 8. Case 2 of Lemma 2.20

As mentioned above, the proofs of the other five cases are very similar to these two. �

Combining Lemmas 2.18 and 2.20 we obtain a complete understanding of how the circles in PL are
labeled and when two labeled circles are tangent to one another.

Proposition 2.21. For any integers a and b with gcd(a, b) = 1, there is either a unique circle
in PL labelled by (a, b) or a unique circle labelled by (−a,−b), but not both. If a and b are both
nonnegative then the label is (a, b). If C(a,b) and C(c,d) are the unique circles in PL with labels (a, b)

and (c, d) respectively, then C(a,b) is tangent to C(c,d) on the left if and only if
∣∣∣a b
c d

∣∣∣ = 1.

Proof. Lemmas 2.18 and 2.20, together with the fact that the inversion operation ι acts as a
bijection between P+

L and P−L , imply the first claim. Lemma 2.13 already tells us the ‘only if’ part
of the second statement. So consider circles C(a,b) and C(c,d) with ad − bc = 1. If all a, b, c, d are
nonnegative then Lemma 2.18 tells us C(a,b) and C(c,d) are tangent. If one of a, b is negative, then
the condition ad−bc = 1 implies that one of c, d must be either negative or zero. But then Lemmas
2.18 and 2.20 imply that the circles ι(C(a,b)) and ι(C(c,d)) are tangent. Since ι preserves tangencies,
it follows that C(a,b) and C(c,d) are also tangent. That C(a,b) is to the left of C(c,d) follows from
Lemma 2.13. �

3. Self-similar half-plane packings

We are now at a point where we may begin to describe the similarities between two half-plane
packings. First we recall exactly what is meant by a similarity of R2.
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Definition 3.1. The map Φ : R2 → R2 is called a similarity of R2 if there exists some constant
µ > 0 such that

||Φ(x)− Φ(y)|| = µ||x− y||
for all x, y ∈ R2.

Every similarity of the plane takes the form

Φ(x) = µAx+ b,

where µ > 0, A is an orthogonal matrix, and b ∈ R2. We say that Φ is orientation-preserving if
detA = +1, and orientation-reversing if detA = −1.

The set of similarities of R2 forms a group under composition, called the similarity group of R2,
which we will denote by S. The orientation-preserving similarities form a subgroup S+.

Similarities take circles to circles, and preserve tangency, so they take Apollonian circle packings
to Apollonian circle packings. A key fact about the action of similarities on circle packings is the
following.

Lemma 3.2. Let Φ be a similarity of R2, and let A, B, and C be three mutually tangent circles
with disjoint interiors. If A, B, and C have collinear centers, then Φ is determined by the three
circles Φ(A), Φ(B), and Φ(C), up to a reflection in the line on which the centers of the image
circles lie. If A, B, and C have non-collinear centers, then Φ is completely determined by Φ(A),
Φ(B), and Φ(C).

Remark. Here we mean that the ‘center’ of a line L lies ‘at infinity’ orthogonal to L in the direction
of its chosen interior. If one of the circles A,B,C, say A, is a line, then the collinearity condition
is satisfied if and only if another of the circles, say B, is also a line, parallel to A. In this case Φ is
determined up to a reflection in the line through the center of C that is orthogonal to A and B.

Proof. Since similarities form a group, it suffices to consider the similarities that fix A, B, and C
(as sets, not pointwise). If a similarity fixes the circles A, B and C, then it fixes their centers. A
similarity that fixes three non-collinear points must be the identity. One that fixes three distinct
collinear points is either the identity or a reflection in the line formed by them. �

Definition 3.3. For Φ ∈ S and an Apollonian packing P, we write

Φ · P := {Φ(C) : C ∈ P}.

Two packings P and P ′ are similar if P ′ = Φ · P for some Φ ∈ S.

The group

Symm(P) := {Φ ∈ S | Φ · P = P}
is the self-similarity group of P. The subgroup of Symm(P) consisting only of orientation-
preserving similarities is the orientation-preserving self-similarity group of P, denoted by
Symm+(P). A packing P is self-similar if Symm(P) is nontrivial.

In order to establish similarity between two packings, we look at the curvatures of the circles
involved.

Definition 3.4. For a circle C in R2, the curvature of C, denoted curv(C) is the reciprocal of
the radius of C. A straight line in R2 is considered to have curvature zero.

Lemma 3.2 allows us to check similarity by looking only at the curvatures in a triple of mutually
tangent circles in each packing.
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Lemma 3.5. The packings P and P ′ are similar if and only if they contain triples of mutually
tangent circles (A,B,C) and (A′, B′, C ′) respectively, such that there exists µ > 0 with

curv(A′) = µ curv(A), curv(B′) = µ curv(B), curv(C ′) = µ curv(C).

Proof. If P and P ′ are similar via similarity Φ with scale factor µ, then take any triple (A,B,C)
and set A′ = Φ(A), B′ = Φ(B), C ′ = Φ(C). To prove the converse, choose a similarity Φ of the
plane that takes A to A′, B to B′ and C to C ′. (One can choose a translation composed with
dilation to get A to A′, add a rotation to get B to B′, then add a reflection if necessary to get C to
C ′.) By construction, P ′ and Φ(P) both contain the triple {A′, B′, C ′}, and therefore P ′ = Φ(P)
by Corollary 2.5. �

Turning now to half-plane packings, that is, those that have a straight line for at least one of the
circles, recall that we can focus on the following packings.

Definition 3.6. Let α ∈ R. Then Pα is the packing generated by a triple {X,Y, L} of mutually
tangent circles, where L is the x-axis in R2, X is a circle of curvature α2 tangent to (and above) L
at the origin, and Y is a circle of curvature 1 resting on L and tangent (on the right) to X. The
generating triple is illustrated in Figure 2 in the Introduction.

Lemma 3.7. Every half-plane packing P is similar, via an orientation-preserving similarity, to Pα
for some α > 0.

Proof. Choose any two tangent circles in P that are tangent to a line but are not themselves lines.
Taking µ to be the ratio of their curvatures (in the appropriate order), and α =

√
µ, this follows

from 3.5. �

The key to analyzing Apollonian circle packings is the following result, due to Descartes. This
describes the relationship between the curvatures of four mutually tangent circles in the plane. A
selection of proofs of this are given in [9].

Theorem 3.8 (Descartes’ Circle Theorem). Let w, x, y, and z represent the curvatures of four
mutually tangent circles in the Euclidean plane. Then

2(w2 + x2 + y2 + z2) = (w + x+ y + z)2.

For half-plane packings, we apply this Theorem in the case where one of the four circles is a line,
i.e. has zero curvature. In this case, the quadratic relationship boils down to a linear relationship
between the square roots of the curvatures of the circles.

Corollary 3.9. Let α2, β2 and γ2 represent the curvatures of three mutually tangent circles all
tangent to a line L, where α ≥ β ≥ 0 and γ ≥ 0. Then

(3.10) γ = α± β.

In particular, when the circle of curvature γ2 lies in the bounded interstice formed by the others,
we have

(3.11) γ = α+ β.

Proof. The proof of (3.10) follows from Theorem 3.8 by setting w = 0 and applying the quadratic
formula appropriately. The proof of (3.11) follows from the fact that the circle in the bounded
interstice has a curvature at least as large as that of the two circles surrounding it. �
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We illustrate (3.11) in Figure 9. Observe that the illustration of this equation is virtually identical
to the illustration in Figure 5, which shows the recursive labelling process defined in §2. It is this
linear relationship between the curvatures of tangent circles that inspires that labelling. A key
consequence of this connection is Lemma 3.13 below.

α
β

α+ β
↑

Figure 9. Descartes’ Theorem for circles in PL. The circles are labelled by the
square roots of their curvatures.

Definition 3.12. Consider now some fixed real number α > 0 and recall the packing Pα from
Definition 3.6. We write Pα,L for the set of circles in Pα that are tangent to the line L (that is,
the x-axis). Let C(1,0) denote the circle of curvature α2 that is tangent to L at the origin, and let
C(0,1) denote the circle of curvature 1 that is tangent to L and to C(1,0) on the right. As described
in the previous section, these choices determine a unique label for each circle in Pα,L. When we
need to specify the underlying α we use a superscript, as in Cα(a,b), but we often drop the α when

context allows.

Lemma 3.13. The circle C(a,b) in Pα,L has curvature given by

curv(C(a,b)) = (aα+ b)2.

Moreover, aα+ b ≥ 0.

Proof. The proof is by induction on the generation of C(a,b) with respect to the generating triple
{L,C(1,0), C(0,1)}. The result is immediately seen to hold for the generation zero circles C(1,0) and

C(0,1), since they were chosen to satisfy curv(C(1,0)) = α2 and curv(C(0,1)) = 1.

Now suppose gen(C(a,b)) = n ≥ 1. The circle C(a,b) was constructed to fill an interstice bounded by
three circles of generation strictly less than n; since C(a,b) is tangent to L, L is necessarily one of
those circles. Because the other two circles are tangent to L as well, we can call them C(a1,b1) and
C(a2,b2) with C(a1,b1) ≺ C(a2,b2). We do the case where C(a,b) fills the bounded interstice between
C(a1,b1) and C(a2,b2). The case where it fills the unbounded interstice, either to the left or right, is
similar.

By Definition 2.11, we have a = a1 + a2 and b = b1 + b2. By Corollary 3.9 then, we get√
curv(C(a,b)) =

√
curv(C(a1,b1)) +

√
curv(C(a2,b2))

= a1α+ b1 + a2α+ b2

= aα+ b,

where the second equality holds by induction. �

The following is an immediate consequence of Lemma 3.13:

Corollary 3.14. If α 6∈ Q, then no two circles in Pα have the same curvature.
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Proof. Suppose curv(C(a,b)) = curv(C(a′,b′)). Then, by Lemma 3.13, we have aα + b = a′α + b′.
Since α is not rational, the only way for this equation to hold is for a = a′ and b = b′ which, by the
uniqueness statement in Proposition 2.21, implies that C(a,b) = C(a′,b′). �

We are now in a position to prove our first main result, identifying the set of similarities between
the two packings Pα and Pβ when α, β are positive real numbers. This is Theorem 1.1 from the
Introduction. We start by showing how to associate a matrix to such a similarity.

Definition 3.15. Fix α, β > 0 and let Φ be a similarity of R2 such that Φ · Pβ = Pα. Also assume
that Φ(L) = L, where L is the x-axis, that is, the chosen line in each packing. Then Φ takes
mutually tangent circles in Pβ,L to mutually tangent circles in Pα,L. In particular, we have

Φ(Cβ(1,0)) = Cα(a,b), Φ(Cβ(0,1)) = Cα(c,d)

for some integers a, b, c, d. By Lemma 2.13, [
a b
c d

]
is an integer matrix of determinant ±1. The determinant is +1 if Cα(a,b) ≺ Cα(c,d), in which case Φ

is orientation-preserving, and −1 if Φ is orientation-reversing. We denote this matrix by A(Φ).

Theorem 3.16. Let α, β > 0. The construction A of Definition 3.15 determines a bijection
between the set of similarities of R2 that take Pβ to Pα (and fix the x-axis) and the set of matrices[
a b
c d

]
in PGL2(Z) that satisfy

β =
aα+ b

cα+ d
.

Furthermore, the restriction of A to orientation-preserving similarities is a bijection onto the set
of elements of PSL2(Z) with this property.

Proof. We first show that A(Φ) satisfies the condition that β =
aα+ b

cα+ d
. Because Φ is a similarity,

there exists some λ > 0 such that curv(Φ(C)) = λ curv(C) for all C ∈ Pβ. Since curv(Cβ(1,0)) = β2

and curv(Cβ(0,1)) = 1, it follows that curv(Cα(a,b)) = λβ2 and curv(Cα(c,d)) = λ. By taking square

roots and applying Lemma 3.13, we may conclude that

aα+ b =
√
λβ

cα+ d =
√
λ,

which we may rewrite as
aα+ b

cα+ d
= β.

To show that A is injective, suppose A(Φ) = A(Φ′) in PGL2(Z). Then, if Φ(Cβ(1,0)) = Cα(a,b) and

Φ′(Cβ(1,0)) = Cα(a′,b′), we must have (a, b) = ±(a′, b′). But, by Proposition 2.21, only one of (a, b) and

(−a,−b) is the label of a circle in Pα. Therefore, in fact (a, b) = (a′, b′) and so Φ(Cβ(1,0)) = Φ′(Cβ(1,0)).

Similarly Φ(Cβ(0,1)) = Φ′(Cβ(0,1)). Since also Φ(L) = Φ′(L), Lemma 3.2 tells us that Φ = Φ′.

Now let
[
a b
c d

]
be an element of PGL2(Z) such that β =

aα+ b

cα+ d
. Because the determinant of this

matrix is ±1, Proposition 2.21 tells us that either (a, b) or (−a,−b), but not both, is the label
of a circle in Pα,L, and that the same holds for (±c,±d). Furthermore, these circles are tangent.
Because we can multiply the matrix by −1 and not change it in PGL2(Z), we may assume that
(a, b) is the label for a circle in Pα,L. Now we need to show that (c, d) is also the label of a circle
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in Pα,L. Suppose that (−c,−d), rather than (c, d), is a label in Pα,L. Lemma 3.13 tells us that

aα + b ≥ 0. This statement, along with the fact that
aα+ b

cα+ d
= β > 0, implies that cα + d > 0,

and therefore (−c)α+ (−d) < 0, which contradicts Lemma 3.13 applied to the circle Cα(−c,−d). We

may therefore conclude that Cα(a,b) and Cα(c,d) form a pair of tangent circles in Pα,L. Then, since the

ratio of the curvatures of Cα(a,b) and Cα(c,d) is

(aα+ b)2

(cα+ d)2
= β2

which is the same as the ratio of the curvatures of Cβ(1,0) and Cβ(0,1), Lemma 3.5 determines a

similarity Φ between Pα and Pβ such that

A(Φ) =
[
a b
c d

]
.

This shows that A is a bijection. We have already noted that A(Φ) ∈ PSL2(Z) if and only if Φ is
orientation-preserving, which gives us the last part of the Theorem. �

We have the following corollaries.

Corollary 3.17. Pα is a strip packing if and only if α ∈ Q+.

Proof. First, we note that Pα is a strip packing if and only if it is similar to the packing P1. By

Theorem 3.16, this is true if and only if there is an integer matrix
[
a b
c d

]
of determinant ±1 such

that
a · 1 + b

c · 1 + d
=

a+ b

c+ d
= α. Certainly, if such a matrix exists, then α is rational. Conversely,

suppose α = p
q with p, q > 0 and gcd(p, q) = 1. Let a and c be positive integers that satisfy

aq − cp = 1, and set b = p− a, d = q − c. By construction,
∣∣∣a b
c d

∣∣∣ = 1 and
a+ b

c+ d
=
p

q
= α. �

Corollary 3.18. If Pα is self-similar, then α is the root of a quadratic polynomial with rational
coefficients.

Proof. If Pα is self-similar, then there is a nontrivial similarity Φ that maps Pα to itself. By

Theorem 3.16, this corresponds to a nontrivial element
[
a b
c d

]
∈ PGL2(Z) such that

aα+ b

cα+ d
= α;

i.e., such that

cα2 + (d− a)α− b = 0.

It is easy to check that the only way for all three coefficients to be zero is for a = d = ±1, b = c = 0,

which contradicts the fact that the matrix
[
a b
c d

]
is not the identity in PGL2(Z). �

The rest of this section is concerned with proving the converse of Corollary 3.18: if α is the root of a
quadratic polynomial with rational coefficients, then Pα is self-similar. This follows from Theorem
3.22 below, which is Theorem 1.2 of the Introduction.

Theorem 3.22 goes beyond identifying which packings are self-similar. We in fact calculate the
self-similarity groups of all the packings. To do this we first show that, in the case β = α, the
bijection of Theorem 3.16 is a group isomorphism. This is the content of the following proposition.
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Proposition 3.19. Let α > 0 be irrational. Then there are group isomorphisms

Symm(Pα) ∼= Stab(α) :=

{[
a b
c d

]
∈ PGL2(Z)

∣∣∣ aα+ b

cα+ d
= α

}
, and

Symm+(Pα) ∼= Stab+(α) :=

{[
a b
c d

]
∈ PSL2(Z)

∣∣∣ aα+ b

cα+ d
= α

}
.

Proof. Since α is not rational by assumption, Corollary 3.17 tell us that Pα is not a strip packing,
so the x-axis L is the unique line in the packing Pα. Therefore every self-similarity of Pα maps L
to L. If we take β = α, then Theorem 3.16 states precisely that we have bijections of the above
forms given by the construction A. Now we show that when β = α, these bijections are group
isomorphisms.

Let Φ and Φ′ be elements of Symm(Pα). Say

A(Φ) =
[
a b
c d

]
and A(Φ′) =

[
a′ b′

c′ d′

]
.

We must show that A(Φ ◦ Φ′) =
[
a b
c d

] [
a′ b′

c′ d′

]
=

[
aa′ + bc′ ab′ + bd′

ca′ + dc′ cb′ + dd′

]
. By Corollary 3.14 and

Lemma 3.2, it will suffice to show

curv((Φ ◦ Φ′)(C(1,0))) = ((aa′ + bc′)α+ (ab′ + bd′))2 and(3.20)

curv((Φ ◦ Φ′)(C(0,1))) = ((ca′ + dc′)α+ (cb′ + dd′))2.(3.21)

In fact, it will suffice to show only that (3.21) holds: since Φ ◦ Φ′ is a similarity, we must have
curv((Φ ◦ Φ′)(C(1,0))) = λ curv(C(1,0)) = λα2 and curv((Φ ◦ Φ′)(C(0,1))) = λ curv(C(0,1)) = λ for
some λ > 0; therefore, if (3.21) is satisfied, the fact that the product of the matrices is still an
element of Stab(α) will force (3.20).

The scale factor λ under the composition Φ ◦ Φ′ is the product of the scale factors µ and µ′ under
the maps Φ and Φ′ respectively. Since curv(C(0,1)) = 1, it follows that

µ = curv(Φ(C(0,1))) = curv(C(c,d)) = (cα+ d)2 and

µ′ = curv(Φ′(C(0,1))) = curv(C(c′,d′)) = (c′α+ d′)2.

Therefore we will have shown that A is a group homomorphism if we can show that

(cα+ d)(c′α+ d′) = (ca′ + dc′)α+ (cb′ + dd′).

Indeed,

a′α+ b′

c′α+ d′
= α =⇒ c′α2 + (d′ − a′)α− b′ = 0

=⇒ cc′α2 + (cd′ − ca′)α− cb′ = 0

=⇒ cc′α2 + (cd′ + dc′ − ca′ − dc′)α− cb′ = 0

=⇒ cc′α2 + (cd′ + dc′)α = (ca′ + dc′)α+ cb′

=⇒ cc′α2 + (cd′ + dc′)α+ dd′ = (ca′ + dc′)α+ (cb′ + dd′)

=⇒ (cα+ d)(c′α+ d′) = (ca′ + dc′)α+ (cb′ + dd′).

�

Now we can prove the main result of this section.

Theorem 3.22. Let α > 0. Then:
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(i) If α ∈ Q, then Pα is a strip packing and

Symm(Pα) ∼= D∞ × Z/2Z

with subgroup

Symm+(Pα) ∼= D∞.

(ii) If α is quadratic over Q, then

Symm(Pα) ∼= Z.

Let D denote the discriminant of the primitive integral polynomial with root α. Then the
subgroup Symm+(Pα) is:
• equal to Symm(Pα) if the Pell equation x2 − Dy2 = −4 has no integral solution for

(x, y);
• the index 2 subgroup of Symm(Pα) if x2 −Dy2 does have an integral solution.

(iii) Otherwise

Symm+(Pα) = Symm(Pα) = 1.

Proof. First of all, it follows immediately from Corollary 3.18 that, for any α > 0 that is neither
rational nor quadratic, Pα is not self-similar. Therefore Symm(Pα) = Symm+(Pα) = 1 for all such
α.

Now suppose that α is rational. Then Corollary 3.17 tells us that Pα is a strip packing. In this
case, the full self-similarity group is generated by a translation ‘along’ the strip, a reflection in
a line perpendicular to the strip, and a reflection that interchanges the two lines. The resulting
group is isomorphic to D∞ × Z/2Z where D∞ is the infinite dihedral group. The subgroup of
orientation-preserving self-similarities of Pα is generated by the translation and the rotation given
by combining the two reflections. This subgroup is isomorphic to D∞.

The main focus of our work is the case where α is of degree precisely 2 over Q. We have already
shown in Proposition 3.19 that

Symm(Pα) ∼=
{[

a b
c d

]
∈ PGL2(Z)

∣∣∣ aα+ b

cα+ d
= α

}
and that

Symm+(Pα) ∼=
{[

a b
c d

]
∈ PSL2(Z)

∣∣∣ aα+ b

cα+ d
= α

}
,

so it suffices to calculate these stabilizer groups.

It turns out that the elements of PGL2(Z) that fix α are closely related to the solutions to the Pell
equations

(3.23) x2 −Dy2 = ±4,

where D = q2 − 4pr is the discriminant of the primitive integer polynomial f(x) = px2 + qx + r
satisfied by α, with p > 0.

Define the sets G and G+ as follows:

G :=

{
x+ y

√
D

2

∣∣∣∣∣ x, y ∈ Z, x2 −Dy2 = ±4

}
and

G+ :=

{
x+ y

√
D

2

∣∣∣∣∣ x, y ∈ Z, x2 −Dy2 = 4

}
,
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where D is as in the previous paragraph. One can easily check that G is a group under multiplication
with subgroup G+. Furthermore, one can show (see [8, Theorem 1.9], for example) that

(3.24) G ∼= Z× {±1}.

Our proof of Theorem 3.22 is given by relating the stabilizer of α in PGL2(Z) with the group G.

Recall that the integers p, q, r are the coefficients of the primitive integer polynomial satisfied by α
and that D = q2 − 4pr. We first construct a group homomorphism

Γ : G →
{[

a b
c d

]
∈ PGL2(Z)

∣∣∣ aα+ b

cα+ d
= α

}
x+ y

√
D

2
7→
[x−yq

2 −yr
yp x+yq

2

]
The matrices in the image of Γ consist of integer entries because:

x± yq ≡ x2 − y2q2 (mod 2)

≡ x2 − y2(q2 − 4pr) (mod 2)

= x2 −Dy2 = ±4 ≡ 0 (mod 2).

These matrices stabilize α because:

pα2 + qα+ r = 0 =⇒ ypα2 + yqα+ yr = 0

=⇒ ypα2 +

(
x+ yq

2
− x− yq

2

)
α+ yr = 0

=⇒
x−yq
2 α− yr

ypα+ x+yq
2

= α,

and are invertible because ∣∣∣∣x−yq2 −yr
yp x+yq

2

∣∣∣∣ =
x2 − y2q2

4
+ y2pr

=
1

4
(x2 −Dy2)

= ±1,

where the sign is positive if and only if (x, y) satisfies x2 − Dy2 = +4. To see that Γ is a group
homomorphism, we check:

Γ

(
x+ y

√
D

2
· x
′ + y′

√
D

2

)
= Γ

(
xx′+Dyy′

2 + xy′+x′y
2

√
D

2

)

=

xx′+yy′(q2−4pr)−xy′q−x′yq4
−xy′r−x′yr+yy′qr−yy′qr

2

x′yp+xy′p+yy′pq−yy′pq
2

xx′+yy′(q2−4pr)+xy′q+x′yq
4


=

[x−yq
2 −yr
yp x+yq

2

][x′−y′q
2 −y′r
y′p x′+y′q

2

]

= Γ

(
x+ y

√
D

2

)
Γ

(
x′ + y′

√
D

2

)
.

Combining the map Γ with the isomorphism of Proposition 3.19 we have now shown how to con-
struct, for each solution to (3.23), a self-similarity of Pα. To prove our Theorem, we calculate
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the kernel and image of the homomorphism Γ. First, we show that Γ is surjective, which implies
that every self-similarity of Pα arises from a solution to (3.23) in the manner described above. So

suppose we are given a matrix A =
[
a b
c d

]
that stabilizes α. In particular, it follows that

cα2 + (d− a)α− b = 0

This polynomial is therefore an integer multiple of the primitive polynomial px2 + qx+ r with root
α. That is, there exists m ∈ Z such that

c = mp

d− a = mq

−b = mr.

Now set

x = a+ d

y = m.

We clearly have x, y ∈ Z and

x2 −Dy2 = (a+ d)2 − (q2 − 4pr)m2

= (a+ d)2 − (a− d)2 − 4bc

= 4(ad− bc) = ±4.

so x+y
√
D

2 ∈ G. (Moreover, this is in G+ if and only if A ∈ PSL2(Z).) It is easy to check that

Γ(x+y
√
D

2 ) = A as required.

Finally, x+y
√
D

2 is in the kernel of Γ if and only if

x− yq = x+ yq = ±2 , yr = yp = 0.

Since p cannot be zero (α 6∈ Q), it follows that y = 0, and therefore x = ±2. In other words,

ker(Γ) = {±1}.

Putting together our various isomorphisms and using (3.24), we now have

Symm(Pα) ∼= G/{±1} ∼= Z.

We have also seen that the orientation-preserving self-similarities correspond under this isomor-
phism to the subgroup G+/{±1}. There are two possibilities here. One is that the generator for
G is in G+. In this case the groups are equal and all the self-similarities of Pα are orientation-
preserving. This happens when there are no integer solutions to the equation

x2 −Dy2 = −4.

The other possibility is that the generator z = x0+y0
√
D

2 for G is not in G+. But then, however, z2

is in G+ and so G+ is an index 2 subgroup of G. In this case, Symm+(Pα) is an index 2 subgroup
in Symm(Pα) as claimed. �

Corollary 3.25. The half-plane packing Pα is self-similar if and only if α is rational or quadratic
over Q. In the quadratic case, Pα is self-similar via an orientation-reversing self-similarity if and
only if the equation x2 −Dy2 = −4 has an integral solution (x, y), where D is the discriminant of
the primitive integral polynomial with root α.
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4. Half-plane Packings and Continued Fractions

In this section, our main goal is to describe how the continued fraction of a positive real number
α manifests itself geometrically in the half-plane packing Pα. Recall that the standard continued
fraction expansion of a positive real number α is a representation of the form

α = a0 +
1

a1 +
1

a2 +
1

. . .

for some integers ak, with a0 ≥ 0 and ak > 0 for all k > 0. It is also standard (and more practical
typographically) to express this expansion simply as α = [a0, a1, a2, . . .].

To begin, we recall the algorithm for computing the continued fraction expansion of a positive real
number α. The continued fraction expansion is computed by successive iterations of the following
algorithm, which we refer to as the continued fraction algorithm. The input for the algorithm
is the number α0 = α. Each step of the algorithm takes αn and determines αn+1.

(A) If αn ≥ 1, let αn+1 = αn − 1.
(B) If 0 < αn < 1, let αn+1 = 1

αn
.

(C) If αn = 0, halt.

Recording the sequence of steps obtained when applying this algorithm to a positive real number
α we get something like

ABAABAAC.

The positive integer ak from the continued fraction expansion corresponds precisely to the length of
the (k+ 1)th string of consecutive A’s. For example, the above sequence represents the application
of the continued fraction algorithm to α0 = 7

5 . The resulting continued fraction expansion is

[1, 2, 2] = 1 +
1

2 +
1

2

=
7

5
.

The sequence (αn) in this case is:

(4.1)
7

5

(A)
−−−→ 2

5

(B)
−−→ 5

2

(A)
−−−→ 3

2

(A)
−−−→ 1

2

(B)
−−→ 2

(A)
−−−→ 1

(A)
−−−→ 0.

Notice that the continued fraction expansion for αn is the same as that for α, but with an ‘initial
segment’ removed. For example, if α0 = [2, 3, 4, 5, 6, 7], then we have

α1 = [1, 3, 4, 5, 6, 7]

α2 = [0, 3, 4, 5, 6, 7]

α3 = [3, 4, 5, 6, 7]

α4 = [2, 4, 5, 6, 7]

α5 = [1, 4, 5, 6, 7]

α6 = [0, 4, 5, 6, 7]

α7 = [4, 5, 6, 7]

and so on.

Turning now back to Apollonian circle packings, we define a circle replacement algorithm.
The input of this algorithm is an ordered pair (X0, Y0), where X0 and Y0 are tangent circles in a
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half-plane packing P that are also tangent to a chosen line L ∈ P. We also require that Y0 is not
itself a line. At the (n + 1)th step of the algorithm, we replace the pair (Xn, Yn) with a new pair
of circles (Xn+1, Yn+1):

(A) If curv(Xn) ≥ curv(Yn), take Yn+1 = Yn and take Xn+1 to be the circle that fills the
unbounded interstice for Xn and Yn (in the sense of Definition 2.8). Note that Corollary
3.9 implies that √

curv(Xn+1) =
√

curv(Xn)−
√

curv(Yn).

(B) If 0 < curv(Xn) < curv(Yn), take Xn+1 = Yn and Yn+1 = Xn.
(C) If curv(Xn) = 0, halt.

As with the continued fraction algorithm, we are interested in the sequence of steps involved when
the algorithm is performed to a given starting pair of circles. (For example, we might obtain the
sequence AABABAAAABAAC.) Our main observation is then the following.

Lemma 4.2. Let α be a positive real number, and let (X0, Y0) be the two circles used to construct the
half-plane packing Pα: X0 and Y0 are tangent to each other and to the x-axis L, and curv(X0) = α2,
curv(Y0) = 1. Then the sequence of steps (A, B, or C) performed in applying the continued fraction
algorithm to α is the same as the sequence of steps performed in applying the circle replacement
algorithm to (X0, Y0). Moreover, we have

αn =

√
curv(Xn)√
curv(Yn)

for all n ≥ 0.

Proof. The proof is by induction on n. For n = 0, this is the claim

α =

√
curv(X0)√
curv(Y0)

which is true by the choice of X0 and Y0.

Suppose that the claim holds for αn and (Xn, Yn). Then αn ≥ 1 if and only if curv(Xn) ≥ curv(Yn)
and αn = 0 if and only if curv(Xn) = 0. This tells us that the next step (A, B, or C) will be the
same for both algorithms. So it remains only to verify that the formula still holds for αn+1 and
(Xn+1, Yn+1).

Suppose that αn ≥ 1. Then we have αn+1 = αn − 1, so it is sufficient to show that√
curv(Xn+1)√
curv(Yn+1)

=

√
curv(Xn)√
curv(Yn)

− 1.

We have Yn+1 = Yn, so it is enough to show that√
curv(Xn+1) =

√
curv(Xn)−

√
curv(Yn)

which follows from Corollary 3.9 as mentioned above.

Finally, suppose that 0 < αn < 1. Then

αn+1 =
1

αn
=

√
curv(Yn)√
curv(Xn)

=

√
curv(Xn+1)√
curv(Yn+1)

.

�
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Figure 10 shows the circle replacement algorithm applied to the packing Pα for α = 7
5 . The circles

are labeled by the square roots of their curvatures. Compare this to (4.1) as an illustration of
Lemma 4.2.

↗ ↖
7
5 1

3
5

2
5

1
5

1
5

0

L
Figure 10. The circle replacement algorithm applied to the packing P 7

5
. The circles

are labeled by the square roots of their curvatures.

Recall that the continued fraction expansion of a real number α determines a sequence of rational
numbers pn

qn
that converge to α. These are the convergents of α and are given by truncating the

continued fraction expansion of α. Thus if

α = [a0, a1, a2, . . . ]

then set
pn
qn

:= [a0, a1, . . . , an],

where pn and qn are nonnegative coprime integers. They satisfy the recurrence equations

(4.3) pn = pn−2 + anpn−1, qn = qn−2 + anqn−1.

We now observe that the convergents of α appear in the labels (in the sense of §2) of the circles in
the circle replacement algorithm applied to the packing Pα.

Lemma 4.4. Let α be a positive real number. Let (X0, Y0) = (C(1,0), C(0,1)) be the generating
circles for the packing Pα. The sequence of distinct circles in the sequence (Yj) defined by the
circle replacement algorithm is

C(0,1), C(q0,−p0), C(−q1,p1), C(q2,−p2), C(−q3,p3), . . . .

In particular, if α 6∈ Q, then

lim
j→∞

curv(Yj) = 0.
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Proof. We have Y0 = C(0,1) and X0 = C(1,0). The first new Yj will appear after the first application
of step (B) of the algorithm, that is, after a0 + 1 steps. At this point we have

Ya0+1 = Xa0 = C(1,−a0) = C(q0,−p0)

and
Xa0+1 = Ya0 = C(0,1).

Now suppose, inductively, that immediately after the nth application of step (B) we have

YN = C(qn−1,−pn−1), XN = C(−qn−2,pn−2).

Running the algorithm until after the next application of (B), that is an + 1 times, we have

YN+an+1 = XN+an = C(−qn−2−anqn−1,pn−2+anpn−1) = C(−qn,pn)

and
XN+an+1 = YN+an = YN = C(qn−1,−pn−1).

The first claim now follows by induction on n.

By Lemma 3.13, we have

curv(C(±qn,∓pn)) = (qnα− pn)2 = q2n

(
α− pn

qn

)2

.

A basic fact about the convergents for continued fractions [7, Theorem 171] is that∣∣∣∣α− pn
qn

∣∣∣∣ < 1

q2n
so

curv(C(±qn,∓pn)) <
1

q2n
.

It follows from (4.3) that qn →∞ as n→∞, so the curvatures of the Yj tend to zero. �

Our goal is now to use this relationship between the circle replacement and continued fraction
algorithms to give new criteria for two packings to be similar, and a new way to understand the
self-similarities of a given packing, both in terms of continued fraction expansions. To do this we
have to know that the circle replacement algorithm involves ‘enough’ of the circles in the packing
to be able to detect any similarity between two packings. The following lemma is key to this.

Lemma 4.5. Let P be a half-plane packing (but not a strip packing). Fix an ordered pair of circles
(X0, Y0) as in the definition of the circle replacement algorithm. Let X and Y be any pair of tangent
circles in PL such that X0 and Y0 are contained in the bounded interstice formed by X and Y . Then
one of the pairs (X,Y ) and (Y,X) appears as (Xn, Yn) in the application of the circle replacement
algorithm to (X0, Y0).

Proof. The second part of Lemma 4.4 implies that the radii of the circles Xn and Yn increase
without bound as n tends to infinity. Therefore there is some smallest integer N such that XN

does not lie in the bounded interstice formed by X and Y . Since XN is tangent to XN−1, the
remark following Definition 2.8 implies that XN also cannot lie in the unbounded interstice for X
and Y . Hence XN is equal to one of X,Y , say Y without loss of generality.

Now YN is either equal to Xn for some n < N , or is equal to Y0. Either way, YN is in the bounded
interstice formed by X and Y and so, in particular, is smaller than XN . This tells us that the
next step in the circle replacement algorithm is (B); i.e., XN+1 = YN and YN+1 = XN = Y . Since
YN+1 is larger than XN+1, we next repeat step (A) until XN+K is larger than YN+K = YN+1 for
some K ≥ 0. Then XN+K is not in the bounded interstice formed by X and Y , but XN+1 is. This
means we can find a smallest M with N + 1 < M ≤ N + K such that XM is not in the bounded
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interstice formed by X and Y . Since it is tangent to XM−1, this circle XM also cannot be in the
unbounded interstice, so must be one of X and Y . But it is not Y since YM is. Therefore we have
XM = X and YM = Y which completes the proof. �

We can now relate properties of the continued fraction expansion of a positive real number α to
geometric properties of the half-plane circle packing Pα.

4.1. Strip packings. We already saw in Corollary 3.17 that Pα is the strip packing if and only if
α ∈ Q. This is now reflected in the fact that the continued fraction expansion for α halts if and
only if α ∈ Q. We can see from Lemma 4.2 that the continued fraction expansion of α halts exactly
when the corresponding circle replacement algorithm produces a circle of curvature 0, that is, a
straight line. This is illustrated in the example of α = 7

5 displayed above.

4.2. Similar packings. We can determine whether the packings Pα and Pβ are similar by exam-
ining the tails of the continued fractions of α and β.

Definition 4.6. Let us say that α and β have eventually equal continued fraction expansions
if there is some k,N ∈ Z such that an = bn+k for all n ≥ N (where [ai] is the continued fraction
expansion of α and [bj ] is the continued fraction expansion of β). For example, [1, 2, 3, 4, 4, 4, 4, . . . ]
and [2, 7, 4, 4, 4, 4, . . . ] are eventually equal. For the purposes of Theorem 4.7, we say that two finite
continued fraction expansions are eventually equal since both expansions terminate.

It is easy to see that α and β have eventually equal continued fraction expansions if and only if
there exist m,n ≥ 0 such that αn = βm (where these are the sequences obtained by applying the
continued fraction algorithm to α and β). This observation yields the following classification of
half-plane packings up to similarity.

Theorem 4.7. For positive real numbers α, β, the circle packings Pα and Pβ are similar if and
only if α and β have eventually equal continued fraction expansions.

Proof. A quick proof of this result follows by identifying each of the conditions in the statement
with the condition that there exist p, q, r, s ∈ Z with ps − qr = ±1 and pα+q

rα+s = β. For the circle

packings, this is Lemma 3.16; for the continued fractions, it is [7, Theorem 175]. However, we give
a more interesting proof arising from the direct comparison between the continued fraction and
circle replacement algorithms.

First, note that α and β have finite continued fraction expansions if and only if α and β are rational,
which is equivalent by Corollary 3.17 to Pα and Pβ both being strip packings, which are similar.
We may therefore assume that α and β are irrational.

Suppose α and β have eventually equal continued fraction expansions. Then αn = βm for some
m,n. This means that the ratio of the curvatures of a pair of tangent circles in Pα, both tangent
to L, is equal to the ratio of the curvatures of a pair of tangent circles in Pβ, both tangent to L. It
follows by Lemma 3.5 that there is a similarity between Pα and Pβ.

To prove the converse, suppose Pα and Pβ are similar. Then there is a pair of circles (X ′0, Y
′
0)

in Pα whose ratio of curvatures is equal to β2, in addition to the original pair of circles (X0, Y0)
in Pα whose ratio of curvatures is α2. The key step is the following claim: if we apply the circle
replacement algorithm to each of these pairs of circles, they will eventually coincide; that is, there is
some pair of circles (X,Y ) in Pα that appears both as (XM , YM ) and (X ′N , Y

′
N ) for some M,N ∈ N.

Note that the circle replacement algorithm only sees ratios of curvatures and not the curvatures
themselves, so the circle replacement algorithm will generate the same numerical data for (X ′, Y ′)
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as it would for the corresponding pair of circles in the packing Pβ. From this claim, it follows that
α and β have eventually equal continued fraction expansions since

αM =

√
curv(XM )√
curv(YM )

=

√
curv(X)√
curv(Y )

=

√
curv(X ′N )√
curv(Y ′N )

= βN .

Now let us prove that the circle replacement algorithms corresponding to α and β eventually
coincide in the sense described in the previous paragraph. Let (Xn, Yn) be the pairs obtained from
applying the circle replacement algorithm to (X0, Y0), as defined in the previous paragraph. We
suppose without loss of generality that X0 ≺ Y0 and X ′0 ≺ Y ′0 . If one of the pairs contained the
other in its bounded interstice, say X0 � X ′0 ≺ Y ′0 � Y0, then by Lemma 4.5 there would be M
such that {XM , YM} = {X ′0, Y ′0}. Suppose instead that

X0 ≺ Y0 � X ′0 ≺ Y ′0 .

Suppose that there is no pair (Xn, Yn) that contains (X ′0, Y
′
0) in its bounded interstice. Then,

for each n, one of the circles Xn and Yn, has its point of tangency with the x-axis between the
corresponding tangency points of Y0 and X ′0. By the second part of Lemma 4.4, this means that
there are arbitrarily large circles, all disjoint, with tangency points in this fixed interval. A little
geometry shows that if two disjoint circles of radii R and R′ are tangent to the x-axis, then their
points of tangency are at least 2

√
RR′ apart. This gives us a contradiction and so we deduce that

there is M such that XM and YM contain both X ′0 and Y ′0 in their bounded interstice. But then by
Lemma 4.5, the pair {XM , YM} is equal to {X ′N , Y ′N} for some N . To complete the proof that the
algorithms eventually coincide, we need to show that we can choose M and N such that XM = X ′N
and YM = Y ′N .

Suppose instead that XM = Y ′N and YM = X ′N . We may assume that XM is smaller than YM
(otherwise, apply one more replacement to (XM , YM ) to replace XM with YM+1 and YM with
XM+1). It follows that Y ′N is smaller than X ′N , so that the next step of the algorithm, step (B),
will set X ′N+1 = Y ′N and Y ′N+1 = X ′N , and we therefore have XM = X ′N+1 and YM = Y ′N+1. �

4.3. Self-similar packings. We also have already seen (Theorem 3.22) that Pα is self-similar (but
not the strip packing) if and only if α is quadratic over Q. It is a well-known fact that an irrational
number α is quadratic over Q if and only if its continued fraction expansion is infinite and periodic;
i.e., if and only if

α = [a0, . . . , an−1, c0, . . . , cm−1, c0, . . . , cm−1, . . .] = [a0, . . . , an−1, c0, . . . , cm−1].

This fact, along with Theorem 4.7, yields the following classification of self-similar half-plane pack-
ings (which are not strip packings):

Theorem 4.8. The similarity classes of self-similar half-plane (non-strip) circle packings corre-
spond bijectively to finite non-repeating sequences of positive integers, up to cyclic permutation.
(A sequence is non-repeating if it is not equal to the concatenation of multiple copies of the same
smaller sequence.)

Proof. Pα is self-similar if and only if the continued fraction expansion for α is periodic, as we
mentioned above. We identify the similarity class of Pα with the minimal periodic part of this
expansion. For example, if α =

√
2 = [1, 2, 2, 2, . . . ] then we identify [Pα] with the one term

sequence (2). If α =
√

3 = [1, 1, 2, 1, 2, 1, 2, . . . ], we identify [Pα] with (1, 2), or equivalently,
(2, 1). Conversely, the finite non-repeating sequence (a0, . . . , an−1) represents the quadratic number
α = [a0, . . . , an−1], so that every such sequence represents a similarity class of self-similar half-plane
packings (namely, the class including Pα). That each sequence represents exactly one similarity
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class follows from Theorem 4.7, since two periodic continued fractions expansions are eventually
equal if and only if they have the same periodic part up to a cyclic permutation. �

Examples. Based on the classification in Theorem 4.8 we can give examples of the simplest self-
similar half-plane packings. In some sense, the simplest such packing is given by α = [1, 1, . . . ] =
1+
√
5

2 . From the perspective of Theorem 4.8, this is represented by the singleton sequence (1). The
corresponding circle packing Pα has a self-similarity constructed from a single circle replacement.
This is displayed in Figure 11.

The next simplest example is α = [2, 2, . . . ] = 1 +
√

2, represented by the singleton sequence (2).
The corresponding circle packing Pα has a self-similarity obtained by doing two circle replacements.
This appears in Figure 12.

There are two different self-similar packings for which a self-similarity involves three circle replace-

ments. Corresponding to the sequence (3), we have α = [3, 3, . . . ] = 3+
√
13

2 . The packing Pα is

shown in Figure 13. Corresponding to the sequence (1,2) we have α = [1, 2, 1, 2, . . . ] = 1+
√
3

2 . This
packing is shown in Figure 14.

We have seen that the self-similarity of the packing Pα is reflected in the continued fraction expan-
sion of α. In fact, it turns out that every self-similarity of Pα comes about from the periodicity of
the continued fraction expansion. In particular, the self-similarity groups of the packings in Figures
11-14 are generated by those arising from the circle replacement algorithm. We can make this more
precise as follows.

Suppose for simplicity that α has a purely periodic continued fraction expansion:

α = [a0, . . . , an−1, a0, . . . , an−1, a0, . . . ] = [a0, . . . , an−1].

(By Theorem 4.7, we lose no generality in doing so.) After performing N = a0 + · · · + an−1 + n
steps of the continued fraction algorithm, the initial segment consisting of the periodic part of the
continued fraction expansion is removed; therefore αN = α. It follows by Lemma 4.2 that applying
N steps of the circle replacement algorithm to the pair (X0, Y0) = (C(1,0), C(0,1)) yields a pair

(XN , YN ) whose curvatures are in the same ratio (i.e., α2) as the original circles (X0, Y0). There is
therefore a similarity of Pα that maps X0 to XN and Y0 to YN by Lemma 3.5. (Note that if the
continued fraction expansion of α is not purely periodic, the above argument determines instead a
similarity mapping (XM , YM ) to (XN , YN ) for some M,N .) In fact, this argument may be repeated
to show that there is a similarity of Pα that maps X0 to XkN and Y0 to YkN for each k ∈ Z≥0. The
next lemma tells us that every self-similarity of Pα arises from the continued fraction expansion of
α in this way.

Lemma 4.9. Suppose α is the positive real number with periodic continued fraction expansion
[a0, . . . , αn−1] and that this is the minimal periodic part. Let Φ denote the generator of Symm(Pα) ∼=
Z for which Φ has scale factor greater than 1, and let (X0, Y0) = (C(1,0), C(0,1)) be the generators
for Pα. Then

Φk(X0) = XkN , Φk(Y0) = YkN

for each k ≥ 0, where N = a0 + · · ·+ an−1 + n as above, and Φk denotes the k-fold composition of
Φ with itself (and Φ0 is the identity map on R2).

Proof. We have already argued that for each k ≥ 0 there is a self-similarity Φk of Pα such that

Φk(X0) = XkN and Φk(Y0) = YkN .

Furthermore, if N does not divide m, then αm 6= α, so that the only self-similarities that correspond
to the circle replacement algorithm are the Φk.
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↑ ↖
X0 Y0

Figure 11. Eight generations of the packing Pα, where α = [1] = 1+
√
5

2 . The circles
corresponding to the circle replacement algorithm are shaded gray.
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↑ ↖
X0 Y0

Figure 12. Eight generations of the packing Pα, where α = [2] = 1 +
√

2. The
circles corresponding to the circle replacement algorithm are shaded gray.



32 MICHAEL CHING AND JOHN R. DOYLE

↑ ↑
X0 Y0

Figure 13. Eight generations of the packing Pα, where α = [3] = 3+
√
13

2 . The
circles corresponding to the circle replacement algorithm are shaded gray.
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↑ ↖
X0 Y0

Figure 14. Eight generations of the packing Pα, where α = [1, 2] = 1+
√
3

2 . The
circles corresponding to the circle replacement algorithm are shaded gray.
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Because the radius of Y0 is 1, the scale factor µk of Φk is equal to the radius of Φk(Y0) = YkN , which
increases as k increases by the definition of the circle replacement algorithm. (Note that the YkN
must necessarily be distinct.) Similarly, since the scale factor for Φk is µk, with µ > 1, the scale
factor for Φk also increases as k increases. It will therefore suffice to show that each self-similarity
φ with scale factor greater than 1 satisfies

φ(X0) = Xm and φ(Y0) = Ym

for some m ≥ 1.

By Lemma 4.5, we may reduce this problem to showing that each of X0 and Y0 either lies in
the bounded interstice for φ(X0) and φ(Y0) or is equal to one of φ(X0) and φ(Y0). Because self-
similarities preserve the basic structure of the packing, X0 (resp. Y0) lies in the bounded interstice
for φ(X0) and φ(Y0) if and only if φ−1(X0) (resp. φ−1(Y0)) lies in the bounded interstice for X0

and Y0. It is therefore enough to show that if ψ is a self-similarity of Pα with scale factor less than
1, then ψ(X0) lies in the bounded interstice for X0 and Y0. In that case ψ(Y0) will have to either
be in the bounded interstice, or be equal to X0 or Y0.

By the proof of Theorem 3.22, for any nontrivial self-similarity ψ of Pα, we have

ψ(X0) = ψ(C(1,0)) = C(x−yq
2

,−yr)

ψ(Y0) = ψ(C(0,1)) = C(yp,x+yq
2 ),

where x and y are integers satisfying |x2 −Dy2| = 4 with y 6= 0. Here f(x) = px2 + qx+ r, p > 0,
is the primitive integer polynomial satisfied by α, and D = q2 − 4pr is the discriminant of f .

To show that ψ(C(1,0)) either lies in the bounded interstice for C(1,0) and C(0,1), or is equal to C(0,1),
it will suffice by Lemmas 2.15 and 2.20 to show that

(4.10)
x− yq

2
> 0 and − yr > 0.

To see this, we first recall a result due to Galois [1, 2] concerning purely periodic continued fractions.
Because α has a purely periodic continued fraction expansion, it is a reduced quadratic number;
i.e., α > 1 and −1 < α′ < 0, where α′ is the quadratic conjugate of α. Since q = −p(α + α′) and
r = pαα′, and since p > 0, it follows that q, r < 0. It is now sufficient to show that x > 0 and
y > 0.

First note that we cannot have both x, y < 0 since then the label on ψ(C(1,0)) would consist of two
negative numbers, which is impossible by Proposition 2.21. We now show also that x and y cannot
have different signs.

Let µ′ be the scale factor of ψ which, by assumption, is less than 1. Since curv(C(0,1)) = 1 and

curv(ψ(C(0,1))) = (ypα+ x+yq
2 )2, it follows that

µ′ =
1(

ypα+ x+yq
2

)2 .
Therefore ∣∣∣∣ypα+

x+ yq

2

∣∣∣∣ > 1.

Since α has purely periodic continued fraction expansion, it is greater than its conjugate, so we

have α = −q+
√
D

2p . The above inequality then implies

|x+ y
√
D| > 2.
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Now x2 − Dy2 = ±4, so x = ±
√
Dy2 ± 4. If x and y have different signs, then this inequality

becomes
|
√
Dy2 ± 4−

√
Dy2| > 2.

But |
√
t+ 4 −

√
t| ≤ 2 for all t ≥ 0, so in fact x and y must have the same sign (and y 6= 0 since

we assumed that ψ was a nontrivial self-similarity). This completes the proof. �

Finally, we can also use continued fractions to see which packings have orientation-reversing self-
similarities.

Theorem 4.11. For a positive real number α, the circle packing Pα has an orientation-reversing
self-similarity if and only if the continued fraction expansion of α has odd period.

Proof. We know from Lemma 4.9 that all self-similarities of Pα correspond to periods in the contin-
ued fraction expansion of α. The self-similarity Φ is orientation-reversing if the corresponding pairs
of circles in the circle replacement algorithm, say (Xn, Yn) and (Xm, Ym), for which Φ(Xn) = Xm

and Φ(Yn) = Ym, satisfy Xn ≺ Yn, but Ym ≺ Xm. Since the orientation of the circles Xk, Yk
changes once for each case of step (B) in the algorithm, that is, for each term in the continued
fraction expansion, we see that Φ is orientation-reversing if and only if it corresponds to an odd
period. �

In the examples, we see that the circle packings Pα for α = [1̄], [2̄], [3̄] do have orientation-reversing
self-similarities, whereas that for α = [1, 2] does not.
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