Why do the homework?
Since you're juniors, you've all figured this out by now.
But, I'll say it anyway...
I can't emphasize enough the importance of working the problems. In some of your classes homework is primarily evaluative; the point is for you to demonstrate what you've learned from the readings and lectures. In physics the homeworks are primarily instructional; you learn physics primarily by doing working problems. You must work the problems, think about the results, and understand any mistakes you've made if you wish to attain the type of understanding of the subject required of a working physicist. In at nutshell: If you can't work problems you don't know physics. I (or a grader) will grade the problems, and I'll hand out solutions. I encourage you to read the solutions and understand any mistakes immediately. If something doesn't make sense, ask me about it right awaydon't wait until right before an exam.
Homework extensions
If you've got a good reason why you need an extension,
come talk to me in advance. I'll usually grant the extension
for some additional reasonable amount of time that we agree upon.
However,
I will not grant a homework extension without penalty if you ask for
it on the day the homework is due, so don't ask for one.
In general,
life will be easier for both of us if you do
your best to finish the problem set on time and hand
in as much as you've been able to complete by the deadline.
[If you need such a lastminute or postfacto extension due
to extenuating circumstances (e.g. death in the family, sudden
illness, travel problem), consult the Dean of Students
or your Class Dean formally make such a request to me and suggest
a rescheduled due date. You should also take this route if you
need an extension but you don't want to tell me why (say, it's for
personal or legal reasons). If you explain your reason to a Dean
and the Dean tells me it's OK, that's good enough for me.]
The College requires that all written work for a course except for a final be submitted by 5 pm on the last day of classes. The physics department takes this deadline seriously. After that day/time, no homework will be accepted.
The roles of lectures and textbooks
Lecture will not be a regurgitation of the text, a summary of all
you need to know for the course, or a howto guide for the homework.
Rather, I'll try delve deeper into selected points.
In lecture I'll cover material and do demonstrations
related to the readings, but I won't feel obliged to
be comprehensive in those places where I feel the text is adequate
and I may focus only on a few points that I feel are particularly
interesting or subtle. You shouldn't expect to understand what's
going on without close study of the readings, and you
should come to class with questions you have
on the readings. Further, after we settle into the semester
a bit, I expect the classes will become less lectureoriented
and more participatory; it will be difficult to reap
the maximum benefit from that format if you're not
sufficiently prepared to fully participate.
For the problems you can't solve, talk to classmates, attend the problem sessions, or ask me. When you ask me, either try to give you just enough of a hint to get you through, or I'll guide you through the problem with a series of leading questions. I'll never just tell you how to do it. If you run out of time and don't finish the set, start earlier next week. When the solutions come out, look over them right away, before you've forgotten all of the points you were confused about. You think you'll just get clear on it before the next exam, but there's never as much time as you think.
On the other hand, if you find the class too slow for your liking, if you have questions that you aren't getting answers to, if you'd like more detail, if you are frustrated that we aren't digging deeply enough, if you crave more applications, come talk to me. I'm very happy to provide you with additional materials or explanations that will will stimulate you and challenge you at whatever level you can handle.
One word of warning: Amherst College students tend to have lots of extracurriculars of all types. I support this, and I am occasionally willing to be flexible to facilitate your participation in range of activities, but don't let your extracurriculars overshadow your academics. If you become concerned that your courses are getting in the way of your extracurriculars, you've got the wrong mindset. Remember why you're here.
Mathematica Tutorials
We may use Mathematica in the homework,
to obtain numerical solutions to problems that are not
analytically solvable and to simplify plotting of results.
If you've never used Mathematica before, or haven't used it much,
the tutorials will help you get started.
They were written by Professor Emeritus Bob Hilborn and revised by
Rebecca Erwin '02. If you download the file and save it to the
desktop with a .nb suffix in the name, your computer will recognize it
as a Mathematica notebook and will start up Mathematica automatically
when you doubleclick on the icon,
provided you have Mathematica installed. Mathematica is installed on
lots of the college's public machines, including
on the computers in the Physics
Department computer lab. Alternately, you can pay the $140 or so
to buy the student version.
Week  Notes  Hmwk  Other 
1. January 26, 2009  Jan 26: The Blackbody Radiation problem I: setting up the problem Course logistics. Crises in classical physics at the end of the 19th century. Blackbody radiation problem: problem statement, experimental results, work out expression for the energy stored in standing waves of an EM cavity in 1D and 3D. Jan 28: The Blackbody Radiation problem II: Ultraviolet Catastrophe Obtain expression for intensity of light as a function of frequency. RaleighJeans formula from classical statistical mechanics (using Boltzmann distribution). Result disagrees with experiment, and is in fact divergent! Planck's suggested solution: energy in each mode is quantized in units of hf. Solution fits experiment well! Jan 30: More problems for classical physics Photoelectric effect: classical mechanics can't explain experiments; Einstein's solution: light comes in discrete chunks of energy hf"photons." Compton effect: take photons seriously as particlesthey have energy and momentum; in photonelectron scattering, light wavelength shift successfully predicted by applying (relativistic) conservation of energy and momentum. DeBroglie wavelength: matter behaves as waves, with wavelength inversely proportional to momentum; Davisson and Germer observe interference patterns in electrons. Planetary model of an atom: problemNagaoka model supported by Rutherford scattering, but classically unstable. Spectroscopy: hydrogen atom radiates only at particular frequencies, a feature not explained by classical physics. 
Read: Griffiths, Chap. 1 Problems: [Due Wednesday 2/4, 11:59 pm] 

2. February 2, 2009  Feb 2: Bohr's atom / The Wavefunction in Quantum Mechanics Wrapping up the historical prelude: Bohr's atom. Bohr postulates angular momentum quantized in multiples of hbar. Interpreting (discrete) energy level differences as photon energies gives correct pattern of spectral lines. Interpret electrons in orbitals as standing DeBroglie matter waves. Wavefunctions in modern quantum mechanics: Schrodinger equation governs the evolution of the wavefunction in QM, as Newton II governs particle trajectory in classical mechanics. But what does the wavefunction describe? Born's statistical interpretation: amplitude square gives probability density for finding particles at a place, time. Interpretations of QM: "realist," "orthodox (Copenhagen)," "agnostic." Bell+experiment decides in favor of Copenhagen. Measurements are funny processes: they collapse the wavefunction. Probability recap: probabilities and expectation values of discrete variables. Feb 4: Normalization of the Wavefunction More probability: define the variance, and observe that it's zero only if there's no spread. Extend probability defs to continuous variables. Normalization of the wfn: needed for probabilistic interpretation of the wfn. Normalization must also be maintained under time evolution by Schrodinger equation, as we demonstrate explicitly. Feb 6: The Momentum Operator Calculate time derivative of expectation value of position, assert that this is the expectation value of velocity. Define expectation of momentum as p=mv. Implies momentum is represented by a derivative operator. Assert that this allows us to calculate expectation of any classical dynamical variable, but substituting classical variables x,p with operators. Solving timeindependent Schrodinger equation: outline our approach, using separation of variables. 
Read: Griffiths, Chap. 1, start Chap. 2 Problems: [Due Tuesday 2/10, 11:59 pm] 
Supplemental Reading: The first part of Planck, Photon Statistics, and BoseEinstein Condensation by Daniel M. Greenberg, et. al. gives you an idea of what Planck did, and did not, believe about quantization. 
3. February 9, 2009  Feb 9: Separation of Variables and Stationary States Guess a solution that's a product f(x) g(t), reduce SE to form F(x)=E=G(t). Solve timedependent ODE in terms of E (easy); can't reduce TISE further without form of potential. Solutions of this form are stationary states: in these states, observables have constant expectation value. Stationary states are energy eigenstates (definite energy values). Linear superpositions of separable solution are also solutions (demonstrate in simple case). Conversely, all solutions can be written as linear superpositions (possibly infinite sum) of stationary states (by completeness relation). Feb 11: Infinite Square Well I In stationary state decomposition of general solution to Schrodinger equation, coefficients of stationary states can be fixed by initial conditions. Infinite square well: outside well wfn=0; inside well it's just the SHO ODE (soln: sin and cos). Boundary conditions: wfn vanishes at edge of well. This is equivalent to standing wave condition on a finite string with fixed endscan only fit integer number of halfwavelengths in the well. Consequence: wavenumber, and hence energy, is quantized. Normalized wfn. Observe: (1) wfns have definite parity symmetry, (2) increasing energy <> more nodes, (3) energy eigenstates are orthonormal. Feb 13: Infinte Square Well II / Simple Harmonic Oscillator I ISW: Energy eigenstates of ISW are complete. More nodes > wigglier wfn > more curvature > larger KE. Energy eigenstates of ISW are orthonormal basis vectors in an infinite dimensional vector space in which functions f(x) are general vectors, integration gives the inner product. Show the correspondence between this vector space and familiar 3d space vectors. Write stationary states and general solution to full Schrodinger equation (superposition of stationary states). Coeff fixed by initial wfn. Conservation of probability implies sum of (coeff)^2 =1. Energy expectation value is constant in time. SHO: factorization methodtry to write Hamiltonian as product of two operators linear in x, p. 
Read: Griffiths, Chap. 2 Problems: [Due Tuesday 2/17, 11:59 pm] 
Supplemental reading:
The time evolution of wavefunctions in an infinite square well is interesting and pretty,
although we won't have much time to spend discussing it. Here are a few articles that
tell (and show) you something about it:

4. February 16, 2009  Feb 16: Simple Harmonic Oscillator II: factorization of H Define ladder operators. Expand products of ladder operators. Define commutator of operators, work out canonical commutation relations, commutators of ladder operators. Write H in terms of ladder ops. Demonstrate that ladder operators acting on eigenstate of H give another eigenstate with energy eigenvalue higher or lower by discrete amount. Can operate repeatedly with these ops to get a ladder of states that has no top rung. Bottom rung: normalizable E<0 states don't exist, so there will be a lowest normalizable state. Feb 18: Simple Harmonic Oscillator III: explicit solutions using ladder operators Lowest rung of ladder: lowering operator acting on ground state gives zero. Defines a 1st order ODE which we can solve explicitly. Normalize ground state and find its energy. To get excited states, apply raising operator repeatedly. Terminology: define Heisenberg algebra, HeisenbergWeyl algebra. Define hermitian conjugate of an operator, show that h.c. of d/dx is d/dx (using integration by parts). x operator is its own h.c. Show that raising and lowering operators are hermitian conjugates of each other. Feb 20: Simple Harmonic Oscillator IV: more with ladders / series solution Brief recap of hermitian conjugates. x, p are their own hermitian conjugates. Selfconjugate operators will have real eigenvalues, can represent physical observables. Comlete result for action of raising and lowering operators on energy eigenstates. Work out normalization of energy eigenstates obtained by repeated operation of raising operator. Energy eigenstates are orthonormal. Frobenius method: write TISE in terms of dimensionless variables. Peel off largex behavior of wfn. Guess form for solution: h[xi] exp[xi^2/2], plug into TISE, get ODE for h[xi] as new eqn equivalent to TISE. Power series expand h[xi] about xi=0. 
Read: Griffiths, Chap. 2 Problems: [Due Tuesday 2/24/09, 11:59 pm] 
Supplemental reading: The Restless Harmonic Oscillator is a simple little paper that considers the small fluctuations of a harmonic oscillator due to thermal, quantum, and gravitational effects. Interesting when considered in the context of modern facilities such as LIGO, and perhaps in the context of Jared Herzberg's colloquium in a few weeks as well. 
5. February 23, 2009  Feb 23: Simple Harmonic Oscillator V: series solution Obtain recurrence relation for coefficients in series expansion of h by plugging series expansion rep of h into TISE. Series starts with two base coefficients, a0 and a1, from which all others are determined. h naturally breaks into even and odd series, each determined by one of the base coeffs. Look at largeorder of series (and thus the largexi behavior of h): grows as exp[xi^2], so h diverges as exp[xi^2] at large xi and solution to TISE diverges as exp[xi^2/2] at large xinot normalizable! Only cure: series must terminate so that the largeorder terms never appear. Feb 25: SHO VI: series solutions / Free particle SHO: Terminating series for SHO solution gives quantized energies. Wfns now have a polynomial factor proportional to the Hermite polynomials. Write out explicit solutions. Note that wfn is nonzero outside classical turning points. Free particle: SE has same form as ISW, but without the boundary conditions. Write TISE solns as exponentials. Stationary state solution has traveling wave form, with left and rightmovers of same functional form. Condense notation by associating negative k with leftmovers. Observe phase velocity is 1/2 classical particle velocity. Observe that the traveling wave stationary states we obtained are not normalizable. Free particles do not have definite energy. General soln to Schrodinger equation is still superposition of stationary states, and we can form wavepacket from these stationary states which are normalizable. Feb 27: Free particle / Delta function potential Free particle: Wavepacketsuperposition of nonnormalizable separable solutions of free particle SE. Determine coefficient function from initial wfn. Coefficient function is the Fourier transform of the t=0 SE. Phase velocity vs. group velocity. Define dispersion relation. Consider a wave packet with a coefficient function sharply peaked in kspace about some k0. Expand w(k) about k0, keep only linear order. Approximate wfn is a phase factor times a traveling wave that moves with group velocity vg=dw/dk(k0), the speed of a classical particle which is twice the phase velocity at the peak. Delta function well: General discussion of bound states and scattering states in classical and quantum mechanics. Deltawell has both types. 
Read: Griffiths, Chap. 2 Problems: [Due Tuesday March 3, 11:59 pm] 
Supplemental reading: Completeness of the energy eigenfunctions for the onedimensional deltafunction potential provides just what the title suggests. See also: Completeness of the energy eigenstates for a delta function potential. 
6. March 2, 2009  Mar 2: Delta function well Bound and scattering states in QM and classical mechanics. Bound state solutions of delta fn well: Schrodinger eqn in x<0, x>0 regions, normalizable solutions. Boundary conditions: Use continuity of psi at x=0. Integrate Schrodinger equation to fix discontinuity in d(psi)/dx. The latter implies energy quantization: single bound state. Normalize bound state wavefunction. Scattering solutions of delta fn well: Write down general positive energy solutions in x<0, x>0 regions. Apply same boundary conditions at x=0 as in bound state calculation. Mar 4: Delta function well / Finite square well Scattering solutions of delta fn well: Boundary conditions. Interpret the terms as a scattering experiment: incident, transmitted, and reflected waves. Calculate transmission and reflection coefficients. Finite square well: Bound state solutionswrite solutions to the TISE in three regions. Classify solutions as either even or odd parity. Choice to consider an even or odd solution automatically reduces the number of coefficients to fix. Mar 6: Finite square well Bound state solutions: consider only the evenparity states (which includes the ground state). Apply boundary conditions. Bound state solutions given by solutions to a transcendental equation. Demonstrate the graphical solution, which shows there's always one such solution regardless well depth. Examine cases of deep, wide well and shallow, narrow well. Cursory discussion of scattering solutions. Sketch of transmission coefficient as a function of energy. RamsaurTownsend effect: well is "transparent" at ISW energy levels. 
Read: Griffiths, Chap. 2, start Chap. 3 Problems: [Due Tuesday March 9, 11:59 pm] 
Supplemental Reading: Heisenberg's Uncertainty Principle by P. Busch, T. Heinonen, P. Lahti gives more on the uncertainty principle. 
7. March 9, 2009  Mar 9: Linear algebra on Hilbert space Wave functions are vectors, operators are linear transformations. Language of QM is linear algbera. Recap of vectors, inner products, and linear transformations on finitedim spaces. On such spaces, inner product exists. In QM, space may be infinitedim: inner product may not exist. Set of squareintegrable (L2) functions is a vector space. Add an inner product and its an inner product space. In fact, it's a complete inner product space (a Hilbert space). Inner product on L2 is finite by Schwarz inequality. Normalization, orthogonality, complete sets of orthonormal functions. Review def of Hermitian conjugate and Hermitian matrix from finitedim linear algebra, define Hermitian conjugate of linear trans more generally. Mar 11: Observables and hermitian transformations Hermitian matrices in finite dimensions: (1) eigenvalues are real, (2) eigenvectors of Hermitian transformation belonging to distinct eigenvalues are othogonal, (3) eigenvectors of a Hermitian transformation span the space. Hermitian operators in QM: that outcomes of measurements are real numbers implies the operators representing observables are Hermitian. Determinate states of an observable are eigenvectors of the corresponding operator. Mar 13: Eigenfunctions of hermitian operators Two categories: (1) discrete spectrum: eigenfunctions are normalizable, live in Hilbert space, can represent physical states; (2) continuous spectrum: eigenfunctions no normalizable, do not represent physical states (superpositions of them do). Discrete spectrum (like finitedim): (1) eigenfunctions have real eigenvalues, (2) eignefunctions belonging to discrete eigenvalues are othogonal (deal with degenerate eigenvalues using GramSchmidt), (3) eigenfunctions are complete. Continuous spectrum: eigenfunctions with real eigenvalues are Dirac orthonormalizable and complete. Examples: momentum operator, position operator. Generalized statistical interpretation: measuring an observable is sure to yield an eigenvalue of the corresponding operator. Probability of getting an outcome is equal to the amplitude squared of the inner product of the corresponding eigenfunction with the state (slightly modified for continuous spectrum case). 
Read: Griffiths, Chap. 3 and Appendix A Problems: [Due Tuesday March 24, 11:59 pm] 
Midterm exam 1: Wed. March 11, 710 pm. Bring your own equations sheet (1 sheet, 8.5" x 11", both sides ). 
8. March 23, 2009  Mar 23: Uncertainty principle generalized Generalized statistical interpretation for discrete or continuous case. Derivation of the generalized uncertainty principle. Compatible and incompatible operators. Mar 25: More on the uncertainty principle How the uncertainty principle affects sequential position and momentum measurements. Minimum uncertainty wavepackets are Gaussian. Energytime uncertainty principle discussed briefly (distinction from the positionmomentum uncertainty principle highlighted). Recap of vectors in Hilbert space, with an emphasis on the geometrical interpretation (basisindependence) of the vector. Mar 27: Dirac notation / Twostate system Introduction to Dirac notation: Dirac notation simplifies the change of bases that allow one to talk about the same vector in terms of position, momentum, or energy eigenstate bases. Operators are linear transformations that take one vector into another. Can be represented by matrices with respect to a particular basis. Twostate system: Start with twodimensional Hilbert space and some basis of vectors. General vector is superposition of these basis vectors. Hamiltonian as 2x2 matrix. How does vector evolve in time from some initial time? Find stationary states (eigenstates of H), add timedependent phase factors, fix coefficients from initial conditions. An initial state, say one of the original basis states, that's not an eigenstate of H will over time rotate into the other basis state and back. Time scale is set by energy splitting between states. It's a type of beat phenomena. 
Read: Griffiths, Chap. 3 Problems: [Due Tuesday March 31, 11:59 pm] 

9. March 30, 2009  Mar 30: Projection operators / Separation of variables Projection operators as the "outer product" of a pair of vectors in Hilbert space. Resolutions of unity. Spectral decomposition of a general operator. QM in 3D: Generalizing momentum operators, Schrodinger euqation, normalization conditions, etc. to 3D. Specialize to spherically symmetric potentials. Write TISE in spherical coords and look for solutions separable into radial and angular variables. Apr 1: The angular equation and the radial equation Angular equation: Separate angular equation into theta and phi equations by separation of variables. Phi equation is easy to solve. If we demand singlevalued wavefunctions, Phi equation forces separation constant m to be an integer. Theta equation is messier: solution in terms of associated Legendre functions. Normalizability requires separation const. l be a positive integer, m an integer between l and l (inclusive). Normalized solutions to angular equations are the spherical harmonics. They are orthonormal. Radial equation: Change variable to transform original radial equation into something like a 1D Schrodinger equation, with an effective potential in place of the original potential. Apr 3: Soving the hydrogen atom Solve the radial equation for the hydrogen atom: convert to dimensionaless variables, peel off asymptotic behavior at r>0 and infinity, solve remaining equation using series expansion. Find a twoterms recurrence relation. Find series must terminate if resulting solution is to be normalizable. Termination condition gives energy quantization. Write out explicit wfn for ground state (n=1), first excited state (n=2). 
Read: Griffiths, Chap. 4 Problems: [Due Tuesday April 7, 11:59 pm] 

10. April 6, 2009  Apr 6: Hydrogen atom / Angular momentum Begin with discussion of exam 1. More hydrogen atom: Degeneracy for general n is n^2. Write out solution to radial equation for general n in terms of associated Laguerre polynomials. Write out full, normalized hydrogen atom wfn for general (n,l,m). Rydberg constant and Rydberg formula. Angular momentum: Define orbital angular momentum operators. Cartesian component angular momentum operators are not compatible. Work out commutation relations. L^2, the squared angular momentum operator, does commute with the cartesian component angular momentum operators. Can find simultaneous eigenstates of both L^2 and one of the components, typically take as L_z. Apr. 8: Angular momentum using ladder operators Define ladder operators, show that they raise and lower the L_z eigenvalue by one unit of hbar when they act on an eigenstate of (H, L^2, L_z). Use ladder operators, and the fact that there must be a largest eigenvalue of L_z for a given eigenvalue of L^2, to deduce the spectrum of L^2 and L_z operators. Eigenfunctions will be spherical harmonics. Apr 10: Orbital angular momentum eigenfunctions and Spin Orbital angular momentum: Write out the angular momentum operator in its position space representation. Use this to write out position space representation of L^2 and L_z eigenvalue equations. These are identical to angular equations encountered in 3D spherical potential problem. Solutions were spherical harmonics, so the spherical harmonics are eigenfunctions of L^2 and L_z. Note that algebraic approach permits l and m to take on halfinteger values, while discussion of orbital angular momentum based on singlevaluedness of wfn did not. Spin: Electron has an intrinsic angular momentum about its center of mass, apparently not related to motion of charge and of a fixed total S^2 value for all electrons. Algebraic theory of spin like that of orbital angular momentum, but the eigenvectors aren't functions in position space so aren't representable as spherical harmonicshence no reason to exclude halfinteger values. Electron is spin1/2: twodimensional Hilbert space. Work out S^2, S_z, S_+/ in terms of Pauli matrices. 
Read: Griffiths, Chap. 4 Problems: [Due Tuesday April 14, 11:59 pm] 

11. April 13, 2009  Apr 13: More on spin Results of measurements of S_z and S_x on a general state. Electron in a magnetic field: Hamiltonian, time evolution of general state, expectation of components of spin operator. SternGerlach experiment. Apr 15: Addition of angular momenta / identical particles For system of two (distinguishable) spin1/2 particles: write basis for the twoparticle Hilbert space as product of singleparticle basis states (Hilbert space is 4dimensional). Calculate total S_z for system in these basis states: looks like a collection of s=1 and s=0 states. m=0 basis states are not eigenstates of S^2. Construct s=1 (triplet) states by acting on m=1 basis state with lowering operator; remaining orthonormal combination is s=0 (singlet) state. Check explicitly, by direct calculation, that states constructed this way are eigenstates of S^2. State general result for allowed values of s, m when adding angular momenta of two particles. Eigenfunctions of total S, S_z written as sum of products of singleparticle basis states using ClebschGordon coefficients. Identical particles: Generalize Schrodinger equation, generalized statistical interpretation, and normalization of wfn to two particle systems. Apr 17: Systems of two identical particles The world allows particles to be fundamentally indistinguishable. Indistinguishability is implemented in the multiparticle wfn by (1) symmetrizing (bosons) or (2) antisymmetrizing (fermions) products of distinguishable singleparticle wfns. Fermions are halfinteger spin, bosons are integer spin. Identical fermions cannot occupy same singleparticle state (Pauli exclusion principle). Formulate behavior of wavefunction under exchange using the exchange operator, which commutes with Hamiltonian, and invoke symmetrization postulate. Exchange forces: calculate mean square distance between distinguishable particles, fermion, and bosons. 
Read: Griffiths, Chap. 5 Problems: [Due Tuesday April 21, 11:59 pm] 

12. April 20, 2009  Apr 20: Atoms lecture contents Apr 22: Solids: T=0 Fermi gas lecture contents Apr 24: Solids: Bloch model lecture contents 
Read: Griffiths, Chap. 5 and 6 Problems: [Due Thursday April 30, 11:59 pm] 

13. April 27, 2009  Apr 27: Bloch model / quantum statistical mechanics lecture contents Apr 29: Enumerating states of manyparticle systems lecture contents May 1: Quantum statistical mechanics / Nondegenerate perturbation theory lecture contents 
Read: Griffiths, Chap. 6 Problems: [Due Friday May 8, 5:00 pm] 

14. May 4, 2009  May 4: Nondegenerate perturbation theory / degenerate perturbation theory lecture contents May 6: Degenerate perturbation theory / fine structure of hydrogen atom lecture contents May 8: Fine structure in hydrogen atom spectroscopy lecture contents 
Read: none Problems: none 