6.17 ** Find the geodesics on the cone whose equation in cylindrical polar coordinates is \(z = \lambda \rho \). [Let the required curve have the form \(\phi = \phi(\rho) \).] Check your result for the case that \(\lambda \to 0 \).

Geodesics on a cone? \((\text{let curve have form } \phi = \phi(\rho))\)

\[z = \lambda \rho \]

In cylindrical coords,
- a small move in \(z \)-direction adds dist. \(\Delta z \)
- a small move in \(\rho \)-dir. adds dist. \(\Delta \rho \)
- a small move in \(\phi \)-dir. adds dist. \(\rho \Delta \phi \)

So:

\[\Delta s = \sqrt{(\Delta z)^2 + (\Delta \rho)^2 + (\rho \Delta \phi)^2} \]

In cylindrical coords.

Using \(z = \lambda \rho \) \(\Rightarrow \Delta z = \lambda \Delta \rho \), we have

\[\Delta s = \sqrt{\lambda^2 (\Delta \rho)^2 + (\Delta \rho)^2 + (\rho \Delta \phi)^2} \]

\[= \Delta \rho \sqrt{(\lambda^2 + 1) + \lambda (\frac{\Delta \phi}{\rho})^2} \]

\[= \Delta \rho \sqrt{(\lambda^2 + 1) + \rho \frac{\Delta \phi}{\rho}} \]

- A geodesic should extremize distance, i.e.

\[L = \int_{\rho_i}^{\rho_f} \Delta s = \int_{\rho_i}^{\rho_f} \rho \sqrt{(\lambda^2 + 1) + \rho \frac{\Delta \phi}{\rho}} = 0 \]

should be stationary for geodesic.

We can apply the Euler-Lagrange equations:

\[\frac{\partial f}{\partial \rho} - \frac{d}{d \rho} \frac{\partial f}{\partial \rho'} = 0 \]

where \(f[\rho, \rho'; \phi] = \sqrt{(\lambda^2 + 1) + \rho \frac{\Delta \phi}{\rho}} \)

observe:

\[\frac{\partial f}{\partial \phi} = 0 \]

\[\frac{d}{d \rho} \frac{\partial f}{\partial \rho'} = 0 \Rightarrow \frac{\partial f}{\partial \rho'} = C \]
\[c = \frac{\partial \phi}{\partial x} = \frac{\partial \phi}{\partial \phi'} \left[(\lambda^2 + 1) + \rho^2 (\phi')^2 \right]^{1/2} \]

\[= \frac{1}{2} \frac{\rho}{\left[(\lambda^2 + 1) + \rho^2 (\phi')^2 \right]^{1/2}} \rho^2 \phi' \]

\[c = \frac{\rho^2 \phi'}{\left[(\lambda^2 + 1) + \rho^2 (\phi')^2 \right]^{1/2}} \]

\[c^2 \left[(\lambda^2 + 1) + \rho^2 (\phi')^2 \right] = \rho \phi'^2 \]

\[(\phi')^2 \left[\rho^2 - c^2 \phi^2 \right] = c^2 (\lambda^2 + 1) \]

\[(\phi')^2 \rho^2 \left[\rho^2 - c^2 \right] = c^2 (\lambda^2 + 1) \]

\[(\phi')^2 = \frac{c^2 (\lambda^2 + 1)}{\rho^2 \left[\rho^2 - c^2 \right]} \]

\[\phi' = \frac{c}{\rho \sqrt{\rho^2 - c^2}} \]

\[\phi(p) = \phi_0 + \frac{c}{\rho \sqrt{\rho^2 - c^2}} \int dp \frac{c}{\rho \sqrt{\rho^2 - c^2}} \]

\[\text{Interpret \ constant} \quad \rho = c x \quad \frac{dp}{dx} = c \ dx \]

\[= \phi_0 + \frac{c}{\sqrt{\lambda^2 + 1}} \int dx \frac{1}{x \sqrt{\lambda^2 + 1}} \]

\[\phi(p) = \phi_0 + \frac{c}{\sqrt{\lambda^2 + 1}} \cos^{-1} \left(\frac{\lambda^2}{\rho} \right) \]

\[\phi(p) = \phi_0 + \frac{c}{\sqrt{\lambda^2 + 1}} \cos^{-1} \left(\frac{\rho}{c} \right) \]

For \(\lambda \to 0 \), i.e. the line approaches the \(x-y \) plane \((z \to 0)\)

\[\phi(p) = \phi_0 + \cos^{-1} \left(\frac{c}{p} \right) \]

\[\cos (\phi(p) - \phi_0) = \frac{c}{p} \]

\[p = \frac{c}{\cos (\phi(p) - \phi_0)} \]

\[p \cos (\phi(p) - \phi_0) = c \]

What does this look like?

If \(\phi_0 = 0 \), i.e. \(p \cos \phi = c \), we'd recognize it as \(\phi = \arctan \frac{y}{x} \)
\[\rho \cos \phi = c, \]

a straight line perpendicular to \(\phi = 0 \), passing a minimum distance \(c \) from the origin.

For \(\phi_0 \neq 0 \), this is a straight line \(\perp \) to the \(\phi = \phi_0 \) line, passing a minimum distance \(c \) from the origin.

\[\rho \cos(\beta - \phi_0) = c \]