
Math 365 Rejection Sampling and MCMC

Submit your R script to tleise@amherst.edu by next Tuesday.

In this lab we will look at rejection sampling and the Metropolis-Hastings algorithm for Markov
chain Monte Carlo simulations.

1 Monte Carlo Integration

We start with the basic idea behind Monte Carlo simulations. Suppose we want to approximate
π. Imagine throwing lots of darts at a 1 meter by 1 meter square board. Draw a quarter circle of
radius 1 on the board. If your aim is uniformly random so that you are equally likely to hit any
point on the square, then after throwing many many darts, you would expect the proportion of
darts landing inside the quarter circle to be equal to its area, π/4. The more darts you throw, the
better the approximation of π you will tend to get.

Exercise 1 Simulate this experiment in R by generating many points on the unit square, then
counting how many landed in the unit circle. Multiply by 4 to obtain an estimate of π. How good
is your approximation if you throw 100 darts? 1,000 darts? 10,000 darts? 100,000 darts?

Ndarts <-1000

x <- runif(Ndarts) # uniform on [0,1]

y <- runif(Ndarts)

theta <- seq(0, pi/2,.01) # to draw circle

plot(cos(theta),sin(theta),col="red",type="l",

xlim=c(0,1),ylim=c(0,1))

points(x,y,pch=".") # darts on board

r2 <- x^2+y^2

sum(r2<=1)/Ndarts*4 # estimate of pi

2 Rejection Sampling

Now suppose you want to generate random numbers from an unusual probability density function,
for example, something strange like f(x) = x(1−x)ex

3−e on [0, 1]. We want a method that uses random
numbers from a density h(x) we know how to calculate, e.g., uniformly distributed random numbers
with h(x) = 1 on [0, 1], and outputs random numbers according to the desired density f(x).
Rejection sampling is one way to accomplish this. First find a constant c such that f(x) ≤ ch(x)
for all x ∈ [0, 1], then follow these steps:

1. Generate a random number x with the density h(x).

2. Generate a uniformly distributed random number u from the interval [0, 1]. If u ≤ f(x)
ch(x) , then

output x; otherwise reject x and return to step 1.



This procedure uses the same underlying idea as the darts example above: Throw many darts at a
board that is c high and with base [0, 1] on which we have drawn our desired density f(x). Reject
the darts that land above the curve, and accept those that land under it. There will be more darts
near values of x for which f(x) is large than where f(x) is small, so with enough darts you will
approximate the density function.

Exercise 2 Use rejection sampling to generate a set of random numbers according to the density
function f(x) = x(1−x)ex

3−e on [0, 1].

f <- function(x) x*(1-x)*exp(x)/(3-exp(1))

t <- seq(0,1,0.01)

plot(t,f(t),type="l") # graph of the desired density function

rdist <- function(c) { # choose c with f(x)<=c for all x

for (i in 1:1000) {
x <- runif(1,0,1) # step 1

u <- runif(1,0,1) # step 2

ifelse(c*u<=f(x),return(x),-1)

}
return(-1) # if tried 1000 times and rejected all

}

The command rdist(c), where you put an appropriate value in for c based on the graph of f(x),
will generate a single random number. Generate 10,000 such random numbers and plot a histogram
using freq=FALSE (so it plots the density). Add a plot of f(x) using the points command in R to
check that the histogram indeed closely matches the desired density function.

3 Metropolis-Hastings Algorithm

Suppose you want to generate a discrete-time Markov chain whose invariant distribution is a given
vector π̄. The Metropolis-Hastings algorithms takes any Markov chain and uses it to generate the
desired Markov chain. We’ll look at the algorithm in this lab, and go over the theory of why it
works in lecture during a later class.

To illustrate the algorithm, let S = {0, 1, 2, 3}. Let the desired invariant probability vector be
π̄ = [0.1 0.2 0.3 0.4]. That is, we want the chain to be at state 0 10% of the time, at state 1 20%
of the time, etc. Take P to be the transition matrix of any convenient Markov chain, for example,
random walk on the circle with p = 1

2 . To generate a new Markov chain, we need to specify the
transitions. Suppose Xm = i. The next state Xm+1 is determined by a two-step procedure:

1. Choose a proposal state j using the transition probabilities P (i, j). For the random walk on
a circle, the proposal state j will be either i− 1 or i+ 1 (mod 4).

2. Decide whether or not to accept the proposal state, according to the acceptance function

a(i, j) =
π(j)P (j, i)

π(i)P (i, j)
.



Generate a uniformly distributed random number u from the interval [0, 1]. The next state
of the chain is

Xm+1 =

{
j, if u ≤ a(i, j)

i, if u > a(i, j).

In this simple case, since p = 1
2 , P (j, i) = P (i, j), so the acceptance function simplifies to a(i, j) =

π(j)
π(i) . Hence the next step will be j if u ≤ π(j)

π(i) ; otherwise it is again i.

pi <- c(0.1, 0.2, 0.3, 0.4)

mcmc <- function(n) { # n=number of steps to take

currentstate <- 0 # initial state X0=0

for (i in 1:n) {
proposal <- (currentstate + sample(c(-1,1),1)) %% 4 # mod 4

accept <- pi[proposal+1]/pi[currentstate+1]

u <- runif(1,0,1)

if (u < accept) currentstate <- proposal }
currentstate }

The mcmc(n) function outputs Xn. We can choose, for example, n = 100 and examine the distri-
bution of X100 from 10,000 simulations:

trials <- 10000

simlist <- replicate(trials,mcmc(100))

table(simlist)/trials

Exercise 3 Run the MCMC simulation and compare your observed distribution to the desired
distribution π̄.


