Math 365 Markov Chain Model of Diffusion

The objective of this lab is to explore large-time behavior and equilibria (invariant probability distributions) of finite-state Markov chains. Feel free to discuss problems with each other during lab, as well as ask me questions. Please email your R script with answers included as comments to tleise@amherst.edu.

1 Warm-up problem

Suppose an urn contains 2 balls, where balls can be either blue or red. Initially, both balls are red. At each stage, one ball is removed at random and replaced by a new ball, which with probability 0.8 is the same color as the removed ball and with probability 0.2 is the opposite color.

1. Define X_{n} to be the number of red balls in the urn after the nth selection. What are the possible states? What is the transition matrix \mathbf{P} for the resulting Markov chain?
2. What is the probability that $X_{1}=2$, given that $X_{0}=2$?
3. What is the probability that $X_{5}=2$, given that $X_{0}=2$? (Use a power of \mathbf{P} to compute this.)
4. What is the probability in the long run that the chain is in state 2 ? Solve in two ways: (a) raise \mathbf{P} to a large power; (b) compute the left eigenvectors of \mathbf{P} and find the one corresponding to eigenvalue 1 .

2 Bernoulli-Laplace model of diffusion

Consider two urns A and B, each of which contains m balls; b of the $2 m$ total balls are black and the remaining $2 m-b$ are white. At each stage, one ball is randomly chosen from each urn and put in the other urn (done simultaneously, so balls are being swapped between urns). Define X_{n} to be the number of black balls in urn A after the nth swap. Observe that $X_{n}=i$ implies A contains i black balls and $m-i$ white balls, while B contains $b-i$ black balls and $m-(b-i)$ white balls. The resulting Markov chain is a probabilistic model of diffusion of two fluids.

Let $m=4$ and $b=4$ for purposes of this lab (to keep calculations manageable). Assume urn A initially contains 4 white balls and B contains 4 black balls.
5. What are the possible states? What is the transition matrix \mathbf{P} for the resulting Markov chain? What kind of boundaries does this chain have?
6. What is the probability that $X_{2}=0$, given that $X_{0}=0$?
7. What is the probability that $X_{3}=0$, given that $X_{0}=0$?
8. What is the probability that $X_{6}=0$, given that $X_{0}=0$?
9. Let ϕ_{0} be the initial probability distribution corresponding to $X_{0}=0$, and let $\phi_{n}=\phi_{0} \mathbf{P}^{n}$. As n increases, what is ϕ_{n} converging to?
To visualize how the system is evolving, you can run a graphical simulation of the ϕ_{n} :

```
phi<-c(1,0,0,0,0)
for (k in 1:15) {
phi <- phi %*% P
plot(0:4,phi,ylim=c(0,1))
Sys.sleep(1)
}
```

10. Find the eigenvalues of \mathbf{P}.
11. Find the left eigenvector of \mathbf{P} corresponding to eigenvalue 1 , and compare to the vector you found in Exercise 9.
