
Math 365 Brownian Motion

Submit your R script to tleise@amherst.edu by next Tuesday.

In this lab we will explore the properties of Brownian motion.

1 Random Walks to Brownian Motion

Brownian motion can be constructed as the limit of random walks, where we shrink time and spatial
steps in concert: ∆x = ±

√
∆t at each discrete jump. Let’s do a few simulations of random walks,

each time shrinking the time step, while keeping the time interval [0, 1] fixed.

Exercise 1 Use the R code below to run several different random walks. Try N = 10, 100, 1000,
and 10000 (called numsteps in the code) to see what happens qualitatively as the time step shrinks
toward 0.

First set up the basic parameters for the random walk simulation:

duration <- 1 # total time

numsteps <- 10 # number of steps

steps <- seq(0,1,1/numsteps)

Do a sequence of coin flips to determine whether to go up or down at each step, with each change
of position equal to ± 1√

N
:

deltax <- sample(c(-1,1),size=numsteps,replace=TRUE)/sqrt(numsteps)

Cumulatively sum these changes in position, assuming X0 = 0, to obtain the random walk:

x <- c(0, cumsum(deltax)) # compute cumulative sum

plot(steps, x, type = "l", ylim = c(-2, 2), main = "Random walk")

Exercise 2 Examine the variability among random walk simulations. Fix the number of steps,
e.g., N = 1000, and run 100 simulations all plotted together on the same graph. A simple way to
do this is to use a for-loop on the code above (but use lines instead of plot to put all on the same
graph).

Exercise 3 We can measure how the spread among walks changes over time by storing a set of
simulations and calculating the variance of Xt across the instances for each fixed t. The following
code stores 1,000 simulations in a matrix:

numsim <- 1000

deltaX <- matrix(sample(c(-1,1),size=numsteps*numsim,replace=TRUE)/sqrt(numsteps),

numsim, numsteps)

X <- cbind(rep(0, numsim), t(apply(deltaX, 1, cumsum)))

To calculate the variance at each time point, apply var to each column of the matrix and then
plot:



v <- apply(X, 2, var)

plot(steps, v, type = "l", xlab = "Time", ylab = "Variance among simulations")

abline(0,1,col="blue") # theoretical value of the variance (linear with slope sigma2=1)

Exercise 4 We can derive a more refined simulation approach by using the theory of Brownian
motion. We know the variance of ∆x = Xt − Xs is (t − s)σ2 (length of the time step times the
variance parameter). If we divide [0, 1] into N equal subintervals, then ∆t = 1

N and the variance
of ∆x is σ2/N . Update the previous code by altering how the changes in position are generated:

deltax <- rnorm(n = numsteps, sd = sqrt(sigma2/numsteps)) # random changes in position

Run simulations using this alternative approach and compare to the random walk. Also explore
changing the variance parameter σ2 to see how that effects the motion, e.g., some smaller values
like 1/2 and some larger values like 2. What changes qualitatively when the variance parameter
changes?

Exercise 5 Brownian motion with drift can be modeled by adding an underlying linear trend with
slope µ to a Brownian motion:

Yt = Xt + µt.

Run simulations of Brownian motion with drift with variance parameter σ2 and slope µ of your
choice. Plot 10 such paths on the same graph (all with the same parameters) along with the trend
line.

Exercise 6 Geometric Brownian motion is defined to be

Yt = eXt

where Xt is Brownian motion (could be with drift if desired). Geometric Brownian motion is
sometimes used to model stock prices over time, if it appears that the percentage changes are
independent and identically distributed. Here’s a rough sketch of the idea: Suppose Yt is the price
of some stock at time t and you believe Yt/Yt−1 are i.i.d. for all positive integer values of t. Let
Zt = Yt/Yt−1. Then

Yn = ZnYn−1 = ZnZn−1Yn−2 = · · · = ZnZn−1 · · ·Z1Y0.

Applying a logarithm yields

log(Yn) = log(Y0) +
n∑

i=1

log(Zi),

so log(Yn) is the sum of i.i.d. random variables (each giving an incremental change in position) and
so can be approximated as a Brownian motion. Hence we set log(Yt) = Xt, where Xt is a Brownian
motion, so that Yt = eXt .

Plot a few instances of geometric Brownian motion including drift, building on your R code from
the previous exercise.


	Random Walks to Brownian Motion

