
Math 365 Branching Processes

Submit your R script to tleise@amherst.edu by next Tuesday.

The objective of this lab is to examine some examples of Galton-Watson branching processes more
closely to determine their long-term behavior and properties. In the 1870s Francis Galton posed
a question about the probability of aristocratic surnames becoming extinct, and a solution was
proposed by the Reverend Henry William Watson. Together they published a paper introducing a
branching process to model patrilineal propagation of aristocratic family names. The same process
was reinvented by Leo Szilard (who spurred the creation of the Manhattan Project) in the 1930s
to model the proliferation of free neutrons in a nuclear fission reaction.

Assume Xn is a branching process with X0 = 1, where pk is the probability of an individual having
k offspring.

1 Supercritical case µ > 1

Choose positive values for p0, p1, and p2 satisfying p0 + p1 + p2 = 1 (so pn = 0 for n ≥ 3) such that
the expected number of offspring of an individual is greater than 1.

1. State your values of p0, p1, and p2 and the resulting value of µ.

2. Calculate the value of a (extinction probability).

3. Run several simulations using the code posted on the course schedule page (BranchingPro-
cessDemo.R) and your values of p0, p1, and p2. You should observe “boom or bust” behavior
(rapid extinction or population explosion).

2 Subcritical case µ < 1

Choose positive values for p0, p1, and p2 satisfying p0 + p1 + p2 = 1 (so pn = 0 for n ≥ 3) such that
the expected number of offspring of an individual is less than 1.

1. State your values of p0, p1, and p2 and the resulting value of µ.

2. Calculate the value of a (extinction probability).

3. Run several simulations using these values of p0, p1, and p2. You should observe eventual
extinction with probability 1.

4. The expected time to extinction T can be calculated via E(T ) =
∑∞

n=1 (1 − an(1)), where
we can recursively calculate the probability of extinction at time n using an(1) = G(an−1(1))
with a1(1) = G(0). Here G(s) =

∑∞
k=0 pks

k is the generating function and an(1) = Gn(0) is
the probability of extinction by step n. We can calculate these values using a for-loop, then
examine a plot to check convergence:



G <- function(s) p[1]+p[2]*s+p[3]*s^2

niteration <- 100

a <- matrix(0,niteration+1,1)

a[1]<-G(0)

for (n in 1:niteration) a[n+1] <- G(a[n])

plot(1:(niteration+1),a, xlab="n", ylab="a n(1)", ylim=c(0,1))

You should observe the an(1) converging to a, which is a fixed point of the iteration.

Next compute partial sums of E(T ) = 1 +
∑∞

n=1 (1 − an(1)) and plot them to check convergence of
the infinite series:

plot(1:(niteration+1),1+cumsum((1-a[1:(niteration+1)])), xlab="n", ylab="Partial sum")

What do you estimate E(T ) to be, based on your graph?

3 Critical case µ = 1

Choose positive values for p0, p1, and p2 satisfying p0 + p1 + p2 = 1 (so pn = 0 for n ≥ 3) such that
the expected number of offspring of an individual equals 1.

1. State your values of p0, p1, and p2 and the resulting value of µ.

2. Calculate the value of a (extinction probability).

3. Run several simulations using these values of p0, p1, and p2. What do you observe for this
borderline case?

4. Plot the partial sums of the infinite series E(T ) =
∑∞

n=1 (1 − an(1)) for this case. What do
you observe?

5. The expected extinction time is infinite for this critical case, even though the extinction
probability a is 1. The reason is that 1− an(1) ∼ C/n for large n. Verify that this occurs for
your example by estimating the value of C from a plot of n(1 − an(1)):

plot(1:niteration,(1:niteration)*(1-a[2:(niteration+1)]), xlab="n", ylab="n(1-a n(1))")

The theoretically derived value is C = 2/σ2, where σ2 is the variance
∑∞

k=0 pk(k − µ)2.


