Practice Problems for Math 320 Exam 2

The exam will be in class on Monday, December 7, and will cover Chapters 7-9.

Key concepts include:

- 1. Fourier transform and its properties (all those on the handout)
- 2. Riemann-Lebesgue Lemma
- 3. Shannon Sampling Theorem (note there is a typo in the book's statement on p210, so use version from lecture or lab)
- 4. Uncertainty Principle
- 5. Haar system
- 6. Expectation and difference operators

Practice problems (exam will have problems similar to these):

Problem 1 State the Shannon Sampling Theorem.

Problem 2 State the Uncertainty Principle and briefly explain its implications for time localization versus frequency localization.

Problem 3 Prove the following property of Fourier transform (assume a nice function f(x) like a Schwartz function): if g(x) = f(x - a) for some $a \in \mathbb{R}$, then $\hat{g}(\omega) = e^{-2\pi i \omega a} \hat{f}(\omega)$.

Problem 4 Prove the following property of Fourier transform (assume a nice function f(x) like a Schwartz function): if g(x) = f(ax) for some $a \neq 0$, then $\hat{g}(\omega) = \frac{1}{|a|} \hat{f}(\frac{\omega}{a})$.

Problem 5 Prove the following property of Fourier transform (assume a nice function f(x) like a Schwartz function): if $g(x) = e^{2\pi i a x} f(x)$ for some $a \in \mathbb{R}$, then $\hat{g}(\omega) = \hat{f}(\omega - a)$.

Problem 6 Prove that the $L^2(\mathbb{R})$ norm of a Schwartz function f(x) equals the norm of its Fourier transform.

Problem 7 What is the Fourier transform of the convolution of two functions $f, g \in S(\mathbb{R})$? Prove this result.

Problem 8 Find $P_0 f(x)$ and $P_1 f(x)$ of f(x) = 2x on [0, 1), zero otherwise. Use these to determine $Q_0 f(x)$ in terms of Haar functions $h_{0,k}(x)$.

Problem 9 Find $P_1f(x)$ and $P_2f(x)$ of f(x) = 4 on [-1, 3/4], zero otherwise. Use these to determine $Q_1f(x)$ in terms of Haar functions $h_{1,k}(x)$.

Problem 10 State the Riemann-Lebesgue Lemma for $f \in S(\mathbb{R})$.

Problem 11 What function equals its own Fourier transform?