Practice Problems for Math 320 Exam 1

The exam will be in class on Monday, October 26, and will cover the material in Chapters 1 and 3-6 (through section 6.4).

Key concepts include:

- 1. $L^2(\mathbb{T})$ function space and its inner product and norm
- 2. Properties of complex exponential functions
- 3. Fourier series for $L^2(\mathbb{T})$ functions
- 4. Basic results concerning convergence of Fourier series (memorize Dirichlet's theorem and Thm 5.1, but not other specific convergence theorems)
- 5. Riemann-Lebesgue Lemma (version on p 109) and rate of decay of Fourier coefficients
- 6. Definition of good kernel
- 7. Dirichlet kernel and relation to partial Fourier sums
- 8. Fejér kernel and relation to Cesàro sums
- 9. Parseval's identity (Fourier series and DFT versions)
- 10. Convolution (definition and properties for $L^2(\mathbb{T})$ functions)
- 11. Definition and properties of the discrete Fourier transform
- 12. Convolution theorem for DFT

Practice problems (exam will have problems very similar to these):

Problem 1 Suppose that $\{g_k(t)\}$ is an orthonormal basis for $L^2(\mathbb{T})$. For $L \in \mathbb{N}$, let $f_L(t) = \sum_{k=-L}^{L} a_k g_k(t)$. State an easy way to compute the a_k coefficients. Show that

$$||f_L||^2_{L^2(\mathbb{T})} = \sum_{k=-L}^L |a_k|^2.$$

Problem 2 Consider the function $f(t) = e^{-it/2}$ for $-\pi \le t \le \pi$, extended to the real line with period 2π . Find the Fourier series for f(t). Simplify the coefficients as much as possible.

Problem3 Suppose that f(t) and g(t) are even, real-valued functions on \mathbb{R} . Prove that the convolution f * g is also an even function.

Problem 4 State the Riemann-Lebesgue Lemma for $f \in L^2(\mathbb{T})$.

Problem 5 Combine integration by parts with the Riemann-Lebesgue Lemma to demonstrate how the number of continuous derivatives a function has relates to the rate at which its Fourier coefficients converge to 0.

Problem 6 State the definition of the Dirichlet kernel, and show why convolution of a function f with the Dirichlet kernel yields a Fourier partial sum for f.

Problem 7 Prove that $f_n = n\chi_{[-\pi/n,\pi/n]}$ for $n \in \mathbb{N}$ is a good kernel.

Problem 8 Carefully state Dirichlet's Theorem for pointwise convergence of Fourier series. Contrast with the situation for L^2 -convergence of Fourier series.

Problem 9 State and prove Parseval's identity for the discrete Fourier transform setting.

Problem 10 Let f(t) be defined on the interval [0, 1) as

$$f(t) = \begin{cases} 1 & \text{if } 0 \le t < 1/2, \\ 0 & \text{if } 1/2 \le t < 1. \end{cases}$$

Let $\mathbf{x} \in \mathbb{R}^N$ with components $x_m = f(m/N)$ for $0 \le m \le N-1$ be a sampled version of f(t) and assume, for simplicity, that N is even. Find the DFT coefficients \hat{x}_k of \mathbf{x} and simplify as much as possible, e.g., $e^{ik\pi} = (-1)^k$, etc.

Problem 11 Let N be a positive even integer and define $\mathbf{x} \in \mathbb{C}^N$ to have components $x(k) = (-1)^k$ for k = 0, 1, ..., N - 1. Find the DFT coefficients $\hat{x}(n)$ and simplify as much as possible. Explain the connection between the number of cycles (repeated pattern of [1 -1]) occurring in \mathbf{x} and its DFT.

Problem 12 Write out the matrix \mathbf{F}_4 and verify that multiplying \mathbf{F}_4 by its complex conjugate yields 4 times the identity matrix.

Problem 13 State and prove the Convolution Theorem concerning the discrete Fourier transform of a discrete circular convolution of two vectors in \mathbb{C}^N .

Problem 14 Let $\mathbf{x}, \mathbf{y} \in \mathbb{C}^N$. Show that $y(k) = \overline{x(k)}$ for all $0 \le k < N$ if and only if $\hat{y}(n) = \overline{\hat{x}(-n)}$ for all $0 \le n < N$.

Problem 15 Let $\mathbf{f} = [1 \ 2 \ 3 \ 4]^t$ and $\mathbf{g} = [4 \ 2 \ 8 \ 6]^t$. Find a vector $\mathbf{x} \in \mathbb{C}^4$ that satisfies $\mathbf{f} * \mathbf{x} = \mathbf{g}$. Hint: What nice property of convolution would simplify this problem?