Math 320 Linear Spline MRA Homework Due Wed 12/16

Let $\varphi(x)=1-|x|$ if $-1 \leq x \leq 1$ and zero otherwise. Let V_{j} be the space of continuous piecewise-linear functions in $L^{2}(\mathbb{R})$ with corners only occurring at dyadic points $k / 2^{j}$ for $k \in \mathbf{Z}$.

We can easily show that $\left\{V_{j}\right\}_{j \in \mathbf{Z}}$ satisfies the nested, separation, and scaling properties of a multiresolution analysis, listed in Definition 10.3 on page 265 in the textbook. The density property follows from a standard theorem in real analysis that any $f \in L^{2}(\mathbb{R})$ can be approximated arbitrarily well by continuous piecewise linear functions. In other words, continuous piecewise linear functions with corners restricted to dyadic points are dense in $L^{2}(\mathbb{R})$.

1. Verify that $\int_{\mathbb{R}} \varphi(x) d x \neq 0$.
2. Directly check that $\varphi(x)$ and $\varphi(x-1)$ are not orthogonal. Hence $\{\varphi(x-k)\}_{k \in \mathbf{Z}}$ is not an orthogonal set.
3. Find $\hat{\varphi}(\xi)$.
4. Calculate $H(\xi)$.

We need to generate a new piecewise linear scaling function whose integer translates are orthogonal in order to have an MRA. In the exercises below, we will generate a new scaling function that satisfies all of the MRA requirements using transform techniques and, in particular, the stability function, which we define here to be

$$
\mathcal{A}(\xi)=\sum_{k \in \mathbb{Z}}|\hat{\varphi}(\xi+k)|^{2}=\sum_{k \in \mathbb{Z}}\langle\varphi(x), \varphi(x-k)\rangle e^{-2 \pi i k \xi} .
$$

The stability function $\mathcal{A}(\xi)$ has constant value 1 if and only if $\{\varphi(x-k)\}_{k \in \mathbb{Z}}$ is an orthonormal set.
5. Calculate $\mathcal{A}(\xi)$ for the given $\varphi(x)$ (note that only a finite number of terms in the equivalent Fourier series are nonzero; directly calculate those nonzero terms). Put in simplest form using trig functions rather than complex exponentials. Show that $0<\frac{1}{3} \leq 2 \pi \mathcal{A}(\xi) \leq 1$.

Let $\Phi(\xi)=1 / \sqrt{\mathcal{A}(\xi)}$. We now define a new scaling function φ^{b} through its Fourier transform:

$$
\hat{\varphi^{b}}(\xi)=\hat{\varphi}(\xi) \Phi(\xi)
$$

6. Prove that the scaling function φ^{b} generates an orthonormal set of translates (check its stability function).

The sequence of approximation spaces $\left\{V_{j}\right\}_{j \in \mathbf{Z}}$ as defined above but with the corrected scaling function φ^{b} now satisfies all the required properties for an MRA.
7. Find the "symbol" $H(\xi)$ such that $\hat{\varphi^{b}}(\xi)=H(\xi / 2) \hat{\varphi^{b}}(\xi / 2)$. Simplify to an expression involving cosine functions.
8. We define the associated wavelet symbol as $G(\xi)=-e^{-2 \pi i \xi} \overline{H\left(\xi+\frac{1}{2}\right)}$. We can then define the wavelet function $\psi^{b}(t)$ via $\hat{\psi}^{b}(\xi)=G(\xi / 2) \hat{\varphi}^{b}(\xi / 2)$. Find $G(\xi)$ and simplify as much as possible.

