
Compression of Images

Instructions: Email the indicated figure and 3 values to tleise@amherst.edu by next Wednesday.

Recall that we store images as matrices whose entries give the color of each pixel in an image. For
grayscale, the usual convention is for entries to be integers between 0 and 255, where 0 is black and
255 is white. For color images, each entry is a vector of 3 values that codes for the color. We’ll
continue to focus on grayscale images, but similar ideas can be applied to color images.

Exercise 1 (Horizon image) Most images you can download from the web are already the result
of compression (e.g., stored in a compressed format like jpg), so it’s difficult to gain much from
further compression. We’ll start with the “Horizon” image posted on the Math 320 webpage, which
is a raw image that is compressible. Load the Horizon.mat file into Matlab via load(’Horizon’);

and then plot it in Matlab, imitating what you did in the previous lab. Don’t email this image–it’s
rather large!

Recall that we can apply the 2D Haar transform to an image using the function HT2D, and invert
using IHT2D with the scripts from the edge detection lab.

Apply 3 iterations of the 2D Haar transform to the Horizon image, imitating what we did in the
edge detection lab. Plot all the approximation and detail matrices together as a single image:

C3=[A3 BV3; BH3 BD3];

C2=[C3 BV2; BH2 BD2];

C1=[C2 BV1; BH1 BD1];

figure;

imagesc(abs(C1));

[M,N]=size(C1); axis equal; axis([0 N 0 M])

colorbar

Here we plot the absolute value because we are interested in comparing how many Haar coefficients
are close to zero versus how many are significantly larger than zero in absolute value. What you
should observe in the decomposed image is a lot of pixels that are essentially zero, with all of the
information about the image compressed into a small proportion of the coefficients. Don’t email
this image either–it’s rather large!

Exercise 2 (Energy of images) Let’s check that the information in the image really is being
concentrated into a relatively few Haar coefficients. Sort the absolute values of the coefficients in
descending order for A and C1 and compare how rapidly the coefficients decay to zero:

figure;

plot(sort(abs(A(:)),’descend’),’k’); % A(:) converts matrix to column vector

hold on;

plot(sort(abs(C1(:)),’descend’),’r’);

legend(’Image’,’Haar coefficients’)



The energy in a vector or matrix is the sum of the squared coefficients, which we’ll normalize by
dividing by the total energy. The following code calculates the cumulative energy in a sorted array
of the image entries:

energyA=sum(A(:).^2);

sortedenergyA=cumsum(sort(A(:).^2,’descend’)/energyA)’;

Find the analogous sorted and normalized cumulative energy array for C1, then plot the cumulative
energy arrays for A and C1 together in a figure. Submit this figure with legend and axes labels added.

Exercise 3 (Threshold compression method) One method to compress the image is to select a
tolerance or threshold that retains 99.9% of the energy in the matrix C1 (which stores the 3rd
iterate’s approximation matrix along with the detail matrices from all 3 iterations, so it has all the
information needed to restore the full image). To determine this threshold, we want to find the
first index for which the C1 cumulative energy array entry is at least 0.999, find the value of the
corresponding coefficient, and use that value as our tolerance in generating the compressed version:

index=find(sortedenergyC1>=0.999,1,’first’);

sortedC1=sort(abs(C1(:)),’descend’);

tolerance=sortedC1(index);

C1comp=C1.*(abs(C1)>=tolerance);

Email me the value of tolerance and what proportion of the entries of C1comp are nonzero, which
you can compute via index/(M*N).

The proportion of coefficients retained is pretty small (and would be even smaller if we used a more
appropriate type of wavelet). However, compressing the image isn’t quite as simple as throwing
away the zeros, as we need to record the indices of where the nonzero coefficients are. So the
actual compressed file won’t save quite as much space as this simple calculation might suggest. An
efficient algorithm for storing the nonzero entries in a sparse matrix like C1comp is a further key
ingredient in compression, but beyond our purview. If you are interested, look up Huffman coding,
a common approach to compactly encoding this type of information. To save space, we would also
quantize the coefficients to be integers 0 to 255, which requires only 8 bits of storage, rather than
the 64 bits required for floating point numbers.

Exercise 4 (Uncompressing the image) To “uncompress” the image, iterate the inverse Haar
transform three times applied to the thresholded matrices (or take the updated matrices directly
from C1comp by figuring out the ranges of indices corresponding to each submatrix). The first two
steps are shown below:

A2uncomp=IHT2D(A3.*(abs(A3)>=tolerance),BH3.*(abs(BH3)>=tolerance),...

BV3.*(abs(BV3)>=tolerance),BD3.*(abs(BD3)>=tolerance));

A1uncomp=IHT2D(A2uncomp.*(abs(A2uncomp)>=tolerance),BH2.*(abs(BH2)>=tolerance),...

BV2.*(abs(BV2)>=tolerance),BD2.*(abs(BD2)>=tolerance));

We can calculate the distortion due to compressing via the `2 relative error:

error=sqrt(sum((A0comp(:)-A(:)).^2)/energyA)

Calculate the relative error for this example and state the value in your email.


