
Fourier Series and the Heat Equation (Due Wed 9/30)

The objective of this lab is to work through a simple example to demonstrate how Fourier
series can be used to predict the temperature along a rod over time. The original motiva-
tion for the development of Fourier series involved finding solutions to partial differential
equations like the heat equation, which describes the diffusion of heat along a bar over time.

As in the previous lab, we will use the sine series as the most convenient formulation of
Fourier series for our present purpose.

Suppose we want to follow the diffusion of heat along a bar of length π meters, which we
represent mathematically as [0, π].

Let u(x, t) be the temperature of the bar at position x (in meters) at time t (in seconds).

At time t = 0, the bar has some temperature distribution, say, u(x, 0) = 100x degrees Celsius
along the interior of the bar 0 < x < π.

We also need to specify what happens at the ends. Let’s say that both ends are held constant
at 0 degrees. This implies that u(0, t) = 0 and u(π, t) = 0 for all t ≥ 0.

Two questions: how does the heat diffuse along the bar over time, and what is the temper-
ature distribution along the bar in the long run?

To answer these questions, we assume that the temperature at each location x of the bar at
time t is governed by the heat equation:

∂u

∂t
= α

∂2u

∂x2
, (1)

where α is the rate of diffusion.

Instructions: Submit the requested figures as .fig or .tif files. You can save figures by
clicking on File in the figure window, then choosing Save As and naming the file after
the corresponding exercise, e.g., JonesLab2Exercise3.fig. When finished the figure files as
attachments to tleise@amherst.edu.

Exercise 1 (Separate variables) Set u(x, t) = f(x)g(t). Plug into the heat equation (1) and
separate variables, so that functions of t are on the left hand side and functions of x are on
the right hand side, putting α with the functions of t. This rearranged equation holds for
all x and for all t, so both sides must be equal to some constant we’ll call −λ (the negative
sign makes things work smoothly inside a square root, as we will see below). Now we have
two ordinary differential equations (ODEs), one in x and one in t.

Exercise 2 (Solve the ODEs) Verify by taking derivatives that the general solutions to
the ODEs are f(x) = a1 cos(

√
λx) + a2 sin(

√
λx) and g(t) = be−αλt. From the boundary

conditions u(0, t) = f(0)g(t) = 0 and u(π, t) = f(π)g(t) = 0 for all t, we see that f(0) = 0
and f(π) = 0. What does this information tell us about the unknown parameter values?



Well, f(0) = 0 implies a1 = 0, and f(π) = 0 then implies that either a2 = 0 (not very
interesting) or

√
λ is an integer, call it k. So now we have many possible candidates for

the solution, which we can express as bk sin(kx)e−αk
2t. We form a sum of these terms, since

by the principle of superposition we can add solutions to obtain new solutions to a linear
equation.

This solution has form u(x, t) =
∑∞

k=1 bk sin(kx)e−αk
2t. But what are the values of the bk? To

compute these, we use our final piece of information, that u(x, 0) =
∑∞

k=1 bk sin(kx) = 100x.
This looks like a sine series! We know how to compute the coefficients for a sine series from
the previous lab.

Exercise 3 (Find the sine series) Determine a formula for the bk coefficients for the function
100x on [0, π] using the fact that∫

x sin(kx)dx =
sin(kx)

k2
− x cos(kx)

k
.

Plot this function and partial sums of the sine series with n = 10, 20, 50 on the same figure.
Add a legend and axes labels: xlabel(‘Position x’);ylabel(‘Temperature u’).

Exercise 4 (Plot the solution) Let α = 0.01 and plot the partial sum of the solution,

50∑
k=1

bk sin(kx)e−αk
2t,

at times t = 1, 10, 50, 100, 200, 400 together on the same figure. Note that in Matlab, the
exponential function et is written exp(t). Label the graphs with a legend and add axes
labels. What is predicted to happen to the temperature along the bar in the long run?


