Introduction to the Haar transform

In this lab we will apply the coefficient formulas connecting scales j and $j+1$ to some examples to explore how the process of changing the resolution works. To explore how the discrete Haar transform works, we will start with a relatively high level of resolution and then see what happens as we decrease the level j and decompose the function into approximations and details.

Instructions: Email the requested figures as .fig or .tif files to tleise@amherst.edu by Wed Oct 28.

Suppose we sample a function f with support in $[0,1)$ at points $t=k / 2^{J}, k=0,1, \cdots, 2^{J}-1$, for some positive integer J, and then record this data as a vector a_{J}.

The coefficients for approximation vectors a_{j} and detail vectors d_{j} are related by the following formulas:

$$
\begin{align*}
& a_{j}(k)=\frac{1}{\sqrt{2}}\left(a_{j+1}(2 k+1)+a_{j+1}(2 k)\right) \tag{1}\\
& d_{j}(k)=\frac{1}{\sqrt{2}}\left(a_{j+1}(2 k+1)-a_{j+1}(2 k)\right) \tag{2}
\end{align*}
$$

That is, add consecutive pairs of numbers to generate the approximation vectors a_{j}, and take differences (odd-indexed number minus the even-indexed number) to generate the detail vectors d_{j}.

Exercise 1 Start by considering $a_{3}=\{2,1,0,1,0,0,1,3\}$ (indexing runs from $k=0$ to 7). Use equations (1) and (2) to calculate by hand the sequences $a_{2}=\left\{a_{2}(0), a_{2}(1), a_{2}(2), a_{2}(3)\right\}$ and $d_{2}=\left\{d_{2}(0), d_{2}(1), d_{2}(2), d_{2}(3)\right\}$ from a_{3}. Next calculate $a_{1}=\left\{a_{1}(0), a_{1}(1)\right\}$ and $d_{1}=\left\{d_{1}(0), d_{1}(1)\right\}$ from a_{2}, then $a_{0}=\left\{a_{0}(0)\right\}$ and $d_{0}=\left\{d_{0}(0)\right\}$ from a_{1}. (You don't need to turn in these calculations.)

Exercise 2 Create a Matlab script that runs through this process for the sequence a_{9} as follows:

```
J=9; t= (0:2^ J-1)'/2^ J;
a9=20*t.^2.*(1-t).^4.*\operatorname{cos}(12*pi*t)+0.1*randn(size(t));
figure; stairs(t,a9)
```

You can apply the formulas commands like (1) and (2) through for-loops, or try more succinct array-based approaches like the following:
$\mathrm{a} 8=(\mathrm{a} 9(1: 2:$ end $)+\mathrm{a} 9(2: 2:$ end $)) /$ sqrt (2); $\%$ adds even-indexed to odd-indexed entries
Note that the theoretical expressions start indexing at $k=0$, while Matlab arrays start indexing at 1. The above code takes the array [a9 (1) a9 (3) a9 (5) ...] (representing $\left\{a_{9}(0), a_{9}(2), a_{9}(4), \ldots\right\}$, that is, the $a_{9}(2 k)$ coefficients) and adds it to the array [a9(2) a9(4) a9(6) ...] (representing $\left\{a_{9}(1), a_{9}(3), a_{9}(5), \ldots\right\}$, that is, the $a_{9}(2 k+1)$ coefficients). Be sure to ask me if it's not clear what the given code is doing or if you want help coding your ideas into Matlab.

Create a 3 -by- 2 figure with subplots showing $a_{8}, d_{8}, a_{7}, d_{7}, a_{6}$, and d_{6}, with identical y axis ranges to allow direct comparison. Clearly label each subplot to indicate which array is being plotted. I suggest using stem to plot the coefficients.

Exercise 3 The "energy" of a sequence is the sum of the squared coefficients. Find the energy in a_{9} (something like sum (a9. ${ }^{\sim} 2$)). Compare this to the energy of a_{8} plus the energy of $d_{8}-$ the sum should equal the energy of a_{9}. This conservation of energy as we decompose the function is another nice property resulting from using an orthonormal basis (and justifying all those pesky $1 / \sqrt{2}$ factors). What do we have to add to the energy of a_{7} to equal the energy of a_{9} (in terms of the energy of other sequences)? What do we have to add to the energy of a_{6} to equal the energy of a_{9} ? Put your answer in the text of your email.

Exercise 4 Repeat Exercise 2 on the sequence
$\mathrm{a} 9=(\mathrm{t}\langle 1 / 3)+(\mathrm{t}\rangle=411 / 512)$;
Submit the analogous figure to that in Exercise 2. What are the $d_{j}(k)$ coefficients revealing in this example? Put your answer in the title of your figure.

