
Introduction to the Haar transform

In this lab we will apply the coefficient formulas connecting scales j and j + 1 to some examples
to explore how the process of changing the resolution works. To explore how the discrete Haar
transform works, we will start with a relatively high level of resolution and then see what happens
as we decrease the level j and decompose the function into approximations and details.

Instructions: Email the requested figures as .fig or .tif files to tleise@amherst.edu by Wed Oct 28.

Suppose we sample a function f with support in [0,1) at points t = k/2J , k = 0, 1, · · · , 2J − 1, for
some positive integer J , and then record this data as a vector aJ .

The coefficients for approximation vectors aj and detail vectors dj are related by the following
formulas:

aj(k) =
1√
2

(
aj+1(2k + 1) + aj+1(2k)

)
(1)

dj(k) =
1√
2

(
aj+1(2k + 1)− aj+1(2k)

)
(2)

That is, add consecutive pairs of numbers to generate the approximation vectors aj , and take
differences (odd-indexed number minus the even-indexed number) to generate the detail vectors dj .

Exercise 1 Start by considering a3 = {2, 1, 0, 1, 0, 0, 1, 3} (indexing runs from k = 0 to 7). Use
equations (1) and (2) to calculate by hand the sequences a2 = {a2(0), a2(1), a2(2), a2(3)} and
d2 = {d2(0), d2(1), d2(2), d2(3)} from a3. Next calculate a1 = {a1(0), a1(1)} and d1 = {d1(0), d1(1)}
from a2, then a0 = {a0(0)} and d0 = {d0(0)} from a1. (You don’t need to turn in these calculations.)

Exercise 2 Create a Matlab script that runs through this process for the sequence a9 as follows:

J=9; t=(0:2^J-1)’/2^J;

a9=20*t.^2.*(1-t).^4.*cos(12*pi*t)+0.1*randn(size(t));

figure; stairs(t,a9)

You can apply the formulas commands like (1) and (2) through for-loops, or try more succinct
array-based approaches like the following:

a8=(a9(1:2:end)+a9(2:2:end))/sqrt(2); % adds even-indexed to odd-indexed entries

Note that the theoretical expressions start indexing at k = 0, while Matlab arrays start indexing at
1. The above code takes the array [a9(1) a9(3) a9(5) ...] (representing {a9(0), a9(2), a9(4), . . . },
that is, the a9(2k) coefficients) and adds it to the array [a9(2) a9(4) a9(6) ...] (representing
{a9(1), a9(3), a9(5), . . . }, that is, the a9(2k + 1) coefficients). Be sure to ask me if it’s not clear
what the given code is doing or if you want help coding your ideas into Matlab.

Create a 3-by-2 figure with subplots showing a8, d8, a7, d7, a6, and d6, with identical y axis ranges
to allow direct comparison. Clearly label each subplot to indicate which array is being plotted. I
suggest using stem to plot the coefficients.



Exercise 3 The “energy” of a sequence is the sum of the squared coefficients. Find the energy
in a9 (something like sum(a9.^2)). Compare this to the energy of a8 plus the energy of d8–the
sum should equal the energy of a9. This conservation of energy as we decompose the function is
another nice property resulting from using an orthonormal basis (and justifying all those pesky
1/
√

2 factors). What do we have to add to the energy of a7 to equal the energy of a9 (in terms of
the energy of other sequences)? What do we have to add to the energy of a6 to equal the energy
of a9? Put your answer in the text of your email.

Exercise 4 Repeat Exercise 2 on the sequence

a9=(t<1/3)+(t>=411/512);

Submit the analogous figure to that in Exercise 2. What are the dj(k) coefficients revealing in this
example? Put your answer in the title of your figure.


