Spring 2014 Math 272 Exam 3 Review Sheet

The exam will be in class on Wednesday, April 30, covering Chapters 4 (focusing on 4.84.10) and 5. You will not be allowed use of a calculator or any other device other than your pencil or pen and some scratch paper. Notes are also not allowed. In kindness to your fellow test-takers, please turn off all cell phones and anything else that might beep or be a distraction.

Important topics:

- Null space, column space, and row space of a matrix
- Kernel and range of a linear transformation
- Rank and nullity of matrices and linear transformations
- Finding a basis for a given subspace or for the null space, column space, or row space of a matrix A or for the kernel or range of a linear transformation
- Coordinates with respect to a basis
- Change of basis and matrix representation of a linear operator
- Diagonalization and determining whether a matrix is diagonalizable

If you have problems with certain topics or want more practice, feel free to stop by my office.
Review problems:
Chapter 4 Review (p316): \#40-46
Chapter 5 Review (p374): \#1-5, 9, 12

Review problems

1. Determine the eigenvalues and eigenvectors of the matrix $\left[\begin{array}{ll}1 & 3 \\ 4 & 2\end{array}\right]$ and find an invertible matrix \mathbf{P} and a diagonal matrix \mathbf{D} such that $\mathbf{A}=\mathbf{P D P}^{-1}$.
2. Give an example of a matrix that is not diagonalizable.
3. Let \mathbf{A} be a 2×2 matrix with eigensystem $\left\{\left\{\lambda_{1}=-\frac{1}{2}, \mathbf{v}_{1}=\left[\begin{array}{c}1 \\ -1\end{array}\right]\right\},\left\{\lambda_{2}=1, \mathbf{v}_{2}=\left[\begin{array}{l}2 \\ 1\end{array}\right]\right\}\right\}$. Find a formula for \mathbf{A}^{k}.
4. Under what conditions on a, b, and c will the matrix $\left[\begin{array}{ccc}2 & 0 & 0 \\ a & 2 & 0 \\ b & c & -1\end{array}\right]$ be diagonalizable? To what diagonal matrix will it be similar?
5. Prove that if \mathbf{A} is diagonalizable such that all of its eigenvalues are either 0 or 1 , then \mathbf{A} is idempotent, $\mathbf{A}^{2}=\mathbf{A}$.
6. Let A be an $m \mathrm{x} n$ matrix. (a) What must the dimension of the null space of \mathbf{A} plus the dimension of the column space of \mathbf{A} equal? (b) What must the dimension of the null space of \mathbf{A}^{t} plus the dimension of the column space of \mathbf{A}^{t} equal?
7. Find the column space, null space, and row space of the matrix $\mathbf{A}=\left[\begin{array}{ccccc}1 & 2 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 3\end{array}\right]$. Show that the rank/nullity theorem holds for this matrix.
8. Suppose \mathbf{A} is an $m \times n$ matrix and \mathbf{B} is an $n \times p$ matrix. Prove that null $(\mathbf{B}) \subseteq \operatorname{null}(\mathbf{A B})$ and $\operatorname{col}(\mathbf{A B}) \subseteq \operatorname{col}(\mathbf{A})$. Under what condition will equality hold in each statement?
9. Find the kernel and range of the linear operator $T: \mathbf{R}^{2} \rightarrow P_{2}$ defined by $T\left(\left[\begin{array}{l}a \\ b\end{array}\right]\right)=(a-b)+(a+b) x+(a+b) x^{2}$. Find the rank and nullity of T. Is T one-to-one? onto?
10. Find the kernel and range of the linear operator $T: \mathbf{R}^{2,2} \rightarrow \mathbf{R}^{3}$ defined by $T\left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\right)=\left[\begin{array}{c}a \\ b+c \\ d\end{array}\right]$. Find the rank and nullity of T. Is T one-to-one? onto?
11. Let the linear transformation $T: \mathbf{R}^{2} \rightarrow P_{2}$ defined by $T\left(\left[\begin{array}{l}a \\ b\end{array}\right]\right)=(a-b)+(a+2 b) x+(a+3 b) x^{2}$. Find the matrix representation of this transformation relative to the standard unit basis for \mathbf{R}^{2} and the basis $\left\{1, x, x^{2}\right\}$ for P_{2}.
12. Let $T: \mathbf{P}_{2} \rightarrow \mathbf{M}_{22}$ be the transformation that maps a polynomial $p(x)$ to the matrix $\left[\begin{array}{ll}p(0) & p(1) \\ p^{\prime}(0) & p^{\prime}(1)\end{array}\right]$, where $p^{\prime}(x)$ is the derivative of $p(x)$. Find the kernel and range of T. Is T one-to-one? Is T onto? Find the matrix representation of T relative to the basis $\left\{x^{2}, x, 1\right\}$ for P_{2} and $\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$ for \mathbf{M}_{22}.
13. Find the matrix representation of the linear transformation $T: \mathbf{P}_{2} \rightarrow \mathbf{R}^{3}$ defined via $T(p)=\left[\begin{array}{l}p(0) \\ p(1) \\ p(0)\end{array}\right]$ using the basis $\left\{1,1+2 x, 3 x+x^{2}\right\}$ for P_{2} and the standard unit basis for \mathbf{R}^{3}.

Partial solutions

1. $\mathbf{D}=\left[\begin{array}{cc}-2 & 0 \\ 0 & 5\end{array}\right], \mathbf{P}=\left[\begin{array}{cc}1 & 3 \\ -1 & 4\end{array}\right]$
2. For example, $\left[\begin{array}{ll}2 & 0 \\ 1 & 2\end{array}\right]$, which has a repeated eigenvalue but the associated eigenspace has dimension 1 .
3. $\frac{1}{3}\left[\begin{array}{cc}2+(-1 / 2)^{k} & 2+(-1 / 2)^{k-1} \\ 1-(-1 / 2)^{k} & 1-(-1 / 2)^{k-1}\end{array}\right]$
4. Need $a=0$ to be diagonalizable, in which case \mathbf{A} is similar to diagonal matrix \mathbf{D} with diagonal entries $2,2,-1$.
5. Suppose \mathbf{A} is diagonalizable such that all of its eigenvalues are either 0 or 1 . Then $\mathbf{A}=\mathbf{P D P}^{-1}$, where \mathbf{D} is a diagonal matrix with zeros and ones along the diagonal and \mathbf{P} is an invertible matrix whose columns are the corresponding eigenvectors. Note that $\mathbf{D}^{2}=\mathbf{D}$ because $0^{2}=0$ and $1^{2}=1$. We have $\mathbf{A}^{2}=\mathbf{P D P}^{-1} \mathbf{P D P}^{-1}=\mathbf{P D}^{2} \mathbf{P}^{-1}=\mathbf{P D P}^{-1}=\mathbf{A}$.
6. (a) The number of columns, n. (b) m.
7. The column space is \mathbf{R}^{4}. $\operatorname{null}(\mathbf{A})=\operatorname{Span}\left\{\left[\begin{array}{c}-2 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right]\right\} \operatorname{row}(\mathbf{A})=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 2 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 1\end{array}\right]\right\}$
8. Suppose \mathbf{A} is an $m \times n$ matrix and \mathbf{B} is an $n \times p$ matrix. Let \mathbf{x} be any vector in null(B), so $\mathbf{B x}=\mathbf{0}$. Multiply each side by \mathbf{A} to obtain $\mathbf{A B x}=\mathbf{A 0}=\mathbf{0}$, implying that \mathbf{x} is in null($\mathbf{A B}$) and so null $(\mathbf{B}) \subseteq \operatorname{null}(\mathbf{A B})$. Let \mathbf{y} be any vector in $\operatorname{col}(\mathbf{A B})$, so $\mathbf{y}=\mathbf{A B x}$ for some vector \mathbf{x}. Then $\mathbf{y}=\mathbf{A}(\mathbf{B x})=\mathbf{A z}$, where $\mathbf{z}=\mathbf{B x}$, and so \mathbf{y} is in the column space of \mathbf{A}. Therefore $\operatorname{col}(\mathbf{A B}) \subseteq$ $\operatorname{col}(\mathbf{A})$. If \mathbf{A} is invertible, then null $(\mathbf{B})=\operatorname{null}(\mathbf{A B})$. If \mathbf{B} is invertible, then $\operatorname{col}(\mathbf{A B})=\operatorname{col}(\mathbf{A})$ (you should prove these).
9. T is one-to-one but not onto. The kernel is $\left\{\left[\begin{array}{l}0 \\ 0\end{array}\right]\right\}$ and the range is $\operatorname{Span}\left\{1+x+x^{2},-1+x+x^{2}\right\}$.
10. T is onto but not one-to-one. The kernel is $\operatorname{Span}\left\{\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]\right\}$ and the range is \mathbf{R}^{3}.
11. $\left[\begin{array}{cc}1 & -1 \\ 1 & 2 \\ 1 & 3\end{array}\right]$
12. T is one-to-one but not onto. The kernel is $\{0\}$ and the range is $\operatorname{Span}\left\{\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 2\end{array}\right]\right\}$. Matrix rep is $\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \\ 2 & 1 & 0\end{array}\right]$
13. $\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 3 & 4 \\ 1 & 1 & 0\end{array}\right]$

Please let me know if you find any errors in these solutions. Thanks!

