A Sample Proof

Math 272, Spring 2012

Here is a sample problem, followed by two proofs.

Let U and V be subspaces of a vector space W. Their sum is defined to be

$$
U+V=\{u+v \mid u \in U, v \in V\} .
$$

Prove that $U+V$ is a subspace of W.

Here is the first proof.

Proof.

(1) Since U and V are subspaces of W, they both contain the zero vector $\mathbf{0}$ of W. Thus $\mathbf{0} \in U$ and $\mathbf{0} \in V$. Then, using the defining property of the zero vector, we obtain

$$
\mathbf{0}=\mathbf{0}+\mathbf{0} \in U+V,
$$

where the final \in follows from the definition of $U+V$.
(2) Take $u, v \in U+V$. To show: $u+v \in U+V$.

First note that $u \in U+V$ implies that $u=u_{1}+v_{1}$ for some $u_{1} \in U$ and $v_{1} \in V$ by the definition of $U+V$. Similarly, $v \in U+V$ implies that $v=u_{2}+v_{2}$ for some $u_{2} \in U$ and $v_{2} \in V$. Then, using the commutative and associative properties of vector addition, we obtain

$$
u+v=\left(u_{1}+v_{1}\right)+\left(u_{2}+v_{2}\right)=\left(u_{1}+u_{2}\right)+\left(v_{1}+v_{2}\right) .
$$

Since $u_{1}+u_{2} \in U$ (U is a subspace) and $v_{1}+v_{2} \in V$ (V is a subspace $)$, we conclude that $u+v \in U+V$ by the definition of $U+V$.
(3) Take $u \in U+V$ and $c \in \mathbb{R}$. To show: $c u \in U+V$.

As in (2), $u \in U+V$ implies that $u=u_{1}+v_{1}$ for some $u_{1} \in U$ and $v_{1} \in V$. Then, using one of the distributive properties of scalar multiplication, we obtain

$$
c u=c\left(u_{1}+v_{1}\right)=c u_{1}+c v_{1} .
$$

Since $c u_{1} \in U$ (U is a subspace) and $c v_{1} \in V$ (V is a subspace), we conclude that $c u \in U+V$ by the definition of $U+V$.

QED

The second proof is the first plus comments in a [different font].

Proof.

(1) [To prove that $U+V$ contains the zero vector, you need to write zero as something in U plus something in V. You need to realize that the obvious way to do this is to use zero plus zero.] Since U and V are subspaces of W, they both contain the zero vector $\mathbf{0}$ of W. Thus $\mathbf{0} \in U$ and $\mathbf{0} \in V$. [Say explicitly that U, V contain the zero vector because they are subspaces.] Then, using the defining property of the zero vector [say explicitly why zero $=$ zero + zero], we obtain

$$
\mathbf{0}=\mathbf{0}+\mathbf{0} \in U+V,
$$

where the final \in follows from the definition of $U+V$. [Say explicitly that the above equation implies that zero is in $U+V$.]
(2) Take $u, v \in U+V$. To show: $u+v \in U+V$. [This is what it means for $U+V$ to be closed under addition.]
First note that $u \in U+V$ implies that $u=u_{1}+v_{1}$ for some $u_{1} \in U$ and $v_{1} \in V$ by the definition of $U+V$. [This is a critical step-once you have $u \in U+V$, you need to immediately write down what this means. The definition of $U+V$ given on the first page writes elements of $U+V$ as $u+v$. But you can't use the same letters here since u and v are already taken. This is where u_{1} and v_{1} come from. Here is the key thing:

- Rather than just repeating the definition of $U+V$, you instead act on the definition as it applies to the particular element $u \in U+V$.]
Similarly, $v \in U+V$ implies that $v=u_{2}+v_{2}$ for some $u_{2} \in U$ and $v_{2} \in V$. [Be sure you understand where u_{2} and v_{2} come from.] Then, using the commutative and associative properties of vector addition [in a proof, always cite the properties you are using], we obtain

$$
u+v=\left(u_{1}+v_{1}\right)+\left(u_{2}+v_{2}\right)=\left(u_{1}+u_{2}\right)+\left(v_{1}+v_{2}\right) .
$$

[This is the key strategy of the proof: since you want to show $u+v \in U+V$, you start with $u+v$ and see where it leads.] Since $u_{1}+u_{2} \in U(U$ is a subspace) [say explicitly that U contains $u_{1}+u_{2}$ because it is a subspace.] and $v_{1}+v_{2} \in V$ (V is a subspace) [same], we conclude that $u+v \in U+V$ by the definition of $U+V$. [Say explicitly that the above equation implies that $u+v$ is in $U+V$.]
(3) Now look at the proof of (3) on page 1 and figure out what the comments are. Memorizing this proof is useless; rather, you need to absorb the strategy so that you can generate the proof on your own.

