
A Sample Proof

Math 272, Spring 2012

Here is a sample problem, followed by two proofs.

Let U and V be subspaces of a vector space W . Their sum is defined

to be

U + V = {u+ v | u ∈ U, v ∈ V }.
Prove that U + V is a subspace of W .

Here is the first proof.

Proof.
(1) Since U and V are subspaces of W , they both contain the zero

vector 0 of W . Thus 0 ∈ U and 0 ∈ V . Then, using the defining

property of the zero vector, we obtain

0 = 0+ 0 ∈ U + V,

where the final ∈ follows from the definition of U + V .

(2) Take u, v ∈ U + V . To show: u+ v ∈ U + V .

First note that u ∈ U+V implies that u = u1+v1 for some u1 ∈ U and

v1 ∈ V by the definition of U + V . Similarly, v ∈ U + V implies that

v = u2+v2 for some u2 ∈ U and v2 ∈ V . Then, using the commutative

and associative properties of vector addition, we obtain

u+ v = (u1 + v1) + (u2 + v2) = (u1 + u2) + (v1 + v2).

Since u1+u2 ∈ U (U is a subspace) and v1+ v2 ∈ V (V is a subspace),

we conclude that u+ v ∈ U + V by the definition of U + V .

(3) Take u ∈ U + V and c ∈ R. To show: cu ∈ U + V .

As in (2), u ∈ U + V implies that u = u1 + v1 for some u1 ∈ U
and v1 ∈ V . Then, using one of the distributive properties of scalar

multiplication, we obtain

cu = c(u1 + v1) = cu1 + cv1.

Since cu1 ∈ U (U is a subspace) and cv1 ∈ V (V is a subspace), we

conclude that cu ∈ U + V by the definition of U + V . QED
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The second proof is the first plus comments in a [different font].

Proof.
(1) [To prove that U + V contains the zero vector, you need to write zero as

something in U plus something in V . You need to realize that the obvious way

to do this is to use zero plus zero.] Since U and V are subspaces of W ,

they both contain the zero vector 0 of W . Thus 0 ∈ U and 0 ∈ V .

[Say explicitly that U, V contain the zero vector because they are subspaces.]

Then, using the defining property of the zero vector [say explicitly why

zero = zero + zero], we obtain

0 = 0+ 0 ∈ U + V,

where the final ∈ follows from the definition of U + V . [Say explicitly

that the above equation implies that zero is in U + V .]

(2) Take u, v ∈ U + V . To show: u+ v ∈ U + V . [This is what it means

for U + V to be closed under addition.]

First note that u ∈ U + V implies that u = u1 + v1 for some u1 ∈ U
and v1 ∈ V by the definition of U + V . [This is a critical step—once you

have u ∈ U + V , you need to immediately write down what this means. The

definition of U + V given on the first page writes elements of U + V as u+ v.
But you can’t use the same letters here since u and v are already taken. This

is where u1 and v1 come from. Here is the key thing:

• Rather than just repeating the definition of U + V , you instead act
on the definition as it applies to the particular element u ∈ U + V .]

Similarly, v ∈ U + V implies that v = u2 + v2 for some u2 ∈ U and

v2 ∈ V . [Be sure you understand where u2 and v2 come from.] Then,

using the commutative and associative properties of vector addition [in

a proof, always cite the properties you are using], we obtain

u+ v = (u1 + v1) + (u2 + v2) = (u1 + u2) + (v1 + v2).

[This is the key strategy of the proof: since you want to show u+ v ∈ U + V ,

you start with u + v and see where it leads.] Since u1 + u2 ∈ U (U is a

subspace) [say explicitly that U contains u1+u2 because it is a subspace.] and
v1 + v2 ∈ V (V is a subspace) [same], we conclude that u+ v ∈ U + V
by the definition of U + V . [Say explicitly that the above equation implies

that u+ v is in U + V .]

(3) Now look at the proof of (3) on page 1 and figure out what the

comments are. Memorizing this proof is useless; rather, you need to

absorb the strategy so that you can generate the proof on your own.


