Non-archimedean Dynamics in Dimension One: Lecture 1

Robert L. Benedetto
Amherst College

Arizona Winter School

Saturday, March 13, 2010
Non-archimedean Fields

Let K be a field with a non-archimedean absolute value $| \cdot | : K \to \mathbb{R}$.

That is, for all $x, y \in K$,

- $|x| \geq 0$, with equality iff $x = 0$,
- $|xy| = |x| \cdot |y|$,
- $|x + y| \leq \max\{ |x|, |y| \}$.

We assume $| \cdot |$ is nontrivial; that is, $|K| \not\supseteq \{0, 1\}$.

We usually assume K is complete w.r.t. $| \cdot |$.
(All Cauchy sequences converge).

Fun Fact: Let K be a complete non-archimedean field, and let $\{a_n\}_{n \geq 0}$ be a sequence in K. Then

$$\sum_{n \geq 0} a_n \text{ converges if and only if } \lim_{n \to \infty} a_n = 0.$$
The Residue Field and Value Group

Let K be a non-archimedean field. The ring of integers and (unique) maximal ideal of K are

$$\mathcal{O}_K = \{x \in K : |x| \leq 1\} \quad \text{and} \quad \mathcal{M}_K = \{x \in K : |x| < 1\}.$$

The residue field of K is

$$k := \mathcal{O}_K / \mathcal{M}_K.$$

The value group of K is

$$|K^\times| \subseteq (0, \infty).$$
A Sketch of a Non-archimedean Field with $k \cong \mathbb{F}_3$
Let K be a complete non-archimedean field, and let L/K be an algebraic extension.

Then $\ | \cdot \ |$ extends uniquely to L.

The new residue field ℓ is an algebraic extension of k.

The new value group $|L^\times|$ contains $|K^\times|$ as a subgroup.

The algebraic closure \overline{K} of K may not be complete.

But its completion \mathbb{C}_K is both complete and algebraically closed.
Example: \(p \)-adic numbers

Fix \(p \geq 2 \) prime. The \(p \)-adic absolute value on \(\mathbb{Q} \) is given by

\[
\left| \frac{r}{s} p^n \right|_p = p^{-n} \quad \text{for } r, s \in \mathbb{Z} \text{ not divisible by } p.
\]

Idea: numbers divisible by large powers of \(p \) are “small”.

\[
\mathbb{Q}_p := \left\{ \sum_{n \geq n_0} a_n p^n : n_0 \in \mathbb{Z}, a_n \in \{0, 1, \ldots, p - 1\} \right\}
\]

is the completion of \(\mathbb{Q} \) w.r.t. \(| \cdot |_p\), with ring of integers

\[
\mathbb{Z}_p := \mathcal{O}_{\mathbb{Q}_p} = \left\{ \sum_{n \geq 0} a_n p^n : a_n \in \{0, 1, \ldots, p - 1\} \right\},
\]

maximal ideal \(\mathcal{M}_{\mathbb{Q}_p} := p\mathbb{Z}_p \), value group \(|\mathbb{Q}_p^\times|_p = p^{\mathbb{Z}} \), and residue field \(\mathbb{Z}_p/p\mathbb{Z}_p \cong \mathbb{Z}/p\mathbb{Z} = \mathbb{F}_p \).

The completion \(\mathbb{C}_p \) of an algebraic closure \(\overline{\mathbb{Q}}_p \) has residue field \(\overline{\mathbb{F}}_p \) and value group \(|\mathbb{C}_p^\times| = p^{\mathbb{Q}} \).
Example: Laurent and Puiseux Series

Fix \mathbb{F} a field. The field of formal Laurent series

$$\mathbb{F}((t)) := \left\{ \sum_{n \geq n_0} a_n t^n : n_0 \in \mathbb{Z}, a_n \in \mathbb{F} \right\}$$

has a non-archimedean absolute value

$$|f| := \varepsilon^{\text{ord}_{t=0} f},$$

where $0 < \varepsilon < 1$ is any (fixed) thing you want.

The ring of integers is the ring $\mathbb{F}[[t]]$ of power series, with maximal ideal $t\mathbb{F}[[t]]$, residue field

$$k = \mathbb{F}[[t]]/t\mathbb{F}[[t]] \cong \mathbb{F},$$

and value group $|\mathbb{F}((t))^{\times}| = \varepsilon^\mathbb{Z}$.

The completion \mathbb{L} of an algebraic closure $\overline{\mathbb{F}((t))}$ is the field of formal Puiseux series over \mathbb{F}, with residue field $\overline{\mathbb{F}}$ and value group $|\mathbb{L}^{\times}| = \varepsilon^\mathbb{Q}$.
Disks

Given \(a \in C_\mathcal{K} \) and \(r > 0 \),

\[
D(a, r) := \{ x \in C_\mathcal{K} : |x - a| < r \}
\]

and

\[
\overline{D}(a, r) := \{ x \in C_\mathcal{K} : |x - a| \leq r \}
\]

are the associated open disk and closed disk.

- if \(r \notin |C_\mathcal{K}_x| \), then \(D(a, r) = \overline{D}(a, r) \) is an irrational disk
- if \(r \in |C_\mathcal{K}_x| \), then then \(D(a, r) \subset \overline{D}(a, r) \).
- \(D(a, r) \) is a rational open disk
- \(\overline{D}(a, r) \) is a rational closed disk

Note:

- All disks are (topologically) both open and closed
- Any disk is exactly one of: rational open, rational closed, or irrational (as a disk).
More about Disks

- Any point of a disk is a center:
 \[D(a, r) = D(b, r) \] (resp., \(\overline{D}(a, r) = \overline{D}(b, r) \))
 for all \(b \in D(a, r) \) (resp., \(b \in \overline{D}(a, r) \))

- Since our disks lie in \(\mathbb{C}_K \), and \(|\mathbb{C}_K^\times| \) is dense in \((0, \infty)\),
 the **radius** of a disk \(D \subseteq \mathbb{C}_K \) is well-defined,
 and equal to the diameter \(\sup \{ |x - y| : x, y \in D \} \).

- Two disks intersect if and only if one contains the other.

- All non-archimedean fields are totally disconnected.
 (I.e., the only connected nonempty subsets are singletons.)

- \(\mathbb{Q}_p \) and \(\mathbb{F}_q((t)) \) are locally compact,
 but \(\mathbb{C}_K \) is not locally compact.
Theorem

Let $a \in \mathbb{C}_K$ and $r > 0$.

Let $g(z) = c_0 + c_1(z - a) + \cdots + c_M(z - a)^M \in \mathbb{C}_K[z]$ be a polynomial. (Or more generally, $g(z) \in \mathbb{C}_K[[z - a]]$ is a power series satisfying certain mild convergence conditions)

Let $s := \max\{ |c_n| r^n \}$, and

\[i := \text{minimum } n \geq 1 \text{ for which } |c_n| r^n = s, \]
\[j := \text{maximum } n \geq 1 \text{ for which } |c_n| r^n = s. \]

Then g maps

$D(a, r)$ i-to-1 onto $D(c_0, s)$, and

$D(a, r)$ j-to-1 onto $D(c_0, s)$,

counting multiplicity.
Example

\(\mathbb{C}_K = \mathbb{C}_p \), and \(g(z) = p^4z^5 + p^2z^3 + z^2 + pz + p^3 \).

Then for any \(r > 0 \), \(g(D(0, r)) = D(p^3, s) \), where

\[
s = \begin{cases}
|p|_p r = p^{-1}r & \text{if } 0 < r \leq |p|_p = \frac{1}{p}, \\
r^2 & \text{if } \frac{1}{p} = |p|_p < r \leq |p|^{-4/3}_p = p^{4/3}, \\
|p^4|_p r^5 = p^{-4}r^5 & \text{if } r \geq |p|^{-4/3}_p = p^{4/3}.
\end{cases}
\]

[Note: \(D(p^3, s) = D(0, s) \) for \(s \geq |p|_p^3 = p^{-3} \).]

The mapping is 1-1 for \(r < |p|_p \),

2-1 for \(|p|_p \leq r < |p|^{-4/3}_p \),

5-1 for \(r \geq |p|^{-4/3}_p \).
$\mathbb{P}^1(\mathbb{C}_K)$-Disks

Recall $\mathbb{P}^1(\mathbb{C}_K) = \mathbb{C}_K \cup \{\infty\}$.

Definition

A $\mathbb{P}^1(\mathbb{C}_K)$-disk is either

- a disk $D \subseteq \mathbb{C}_K$, or
- the complement $\mathbb{P}^1(\mathbb{C}_K) \setminus D$ of a disk $D \subseteq \mathbb{C}_K$.

We can attach the adjectives *rational open*, *rational closed*, or *irrational* in the obvious way.

Theorem

Let $g(z) \in \mathbb{C}_K(z)$ be a non-constant rational function, and let $D \subseteq \mathbb{P}^1(\mathbb{C}_K)$ be a $\mathbb{P}^1(\mathbb{C}_K)$-disk. Then $g(D)$ is either

- all of $\mathbb{P}^1(\mathbb{C}_K)$, or
- a $\mathbb{P}^1(\mathbb{C}_K)$-disk of the same type as D.
Connected Affinoids

Definition
A *connected affinoid* in $\mathbb{P}^1(\mathbb{C}_K)$ is a nonempty intersection of finitely many $\mathbb{P}^1(\mathbb{C}_K)$-disks. Equivalently, a connected affinoid is $\mathbb{P}^1(\mathbb{C}_K)$ with finitely many $\mathbb{P}^1(\mathbb{C}_K)$-disks removed.

We can attach the adjectives *rational open*, *rational closed*, or *irrational* in the obvious way.

Theorem
Let $g(z) \in \mathbb{C}_K(z)$ be a rational function of degree $d \geq 1$, and let $U \subseteq \mathbb{P}^1(\mathbb{C}_K)$ be a connected affinoid. Then

- $g(U)$ is either $\mathbb{P}^1(\mathbb{C}_K)$ or a connected affinoid of the same type as U.
- $g^{-1}(U)$ is a union of $1 \leq \ell \leq d$ connected affinoids V_1, \ldots, V_{ℓ} of the same type, and $g : V_i \rightarrow U$ is d_i-to-1, where $1 \leq d_i \leq d$, and $\sum_{i=1}^{\ell} d_i = d$.
A Polynomial Example

\[\mathbb{C}_K = \mathbb{C}_p, \text{ and } g(z) = pz^3 - z^2 + z. \] Then

- Let \(U \) be the rational closed annulus \(\overline{D}(0, 1) \setminus D(0, 1). \) Then \(g(U) = \overline{D}(0, 1). \)

 [Note: some points map 1-to-1, but others map 2-to-1.]

- \(g^{-1}(\overline{D}(0, 1)) = \overline{D}(0, 1) \cup \overline{D}(1/p, |p|_p), \) with
 - \(g : \overline{D}(0, 1) \to \overline{D}(0, 1) \) mapping 2-to-1, and
 - \(g : \overline{D}(1/p, |p|_p) \to \overline{D}(0, 1) \) mapping 1-to-1.

- \(g^{-1}(\overline{D}(0, |p|_p^{-3})) = \overline{D}(0, |p|_p^{-4/3}), \) mapping 3-to-1.
A Rational Example

\(\mathbb{C}_K \) is any complete, algebraically closed non-archimedean field, and
\(h(z) = z - \frac{1}{z} = \frac{z^2 - 1}{z} \).

\(h^{-1}(D(0, 1)) = D(1, 1) \cup D(-1, 1) \), with

\(\triangleright \) each of \(D(\pm 1, 1) \) mapping 1-1 onto \(D(0, 1) \) if the residue characteristic is not 2, or

\(\triangleright \) \(D(-1, 1) = D(1, 1) \) mapping 2-1 onto \(D(0, 1) \) if the residue characteristic is 2.

\(h^{-1}(\overline{D}(0, 1)) \) is the annulus \(\overline{D}(0, 1) \setminus D(0, 1) \), which maps 2-to-1 onto \(\overline{D}(0, 1) \).
Dynamics on $\mathbb{P}^1(\mathbb{C}_K)$: Classifying Periodic Points

Fix a rational function $\phi(z) \in \mathbb{C}_K(z)$ of degree $d \geq 2$.

If $x \in \mathbb{P}^1(\mathbb{C}_K)$ is periodic of exact period n, then $\lambda := (\phi^n)'(x)$ is the multiplier of x. We say x is

- **attracting** if $|\lambda| < 1$.
- **repelling** if $|\lambda| > 1$.
- **indifferent** (or neutral) if $|\lambda| = 1$.

Note:

- The multiplier is the same for all points in the periodic cycle of x.
- The multiplier is coordinate-independent.
The Spherical Metric on $\mathbb{P}^1(\mathbb{C}_K)$

There is a spherical metric on $\mathbb{P}^1(\mathbb{C}_K)$ analogous to that on $\mathbb{P}^1(\mathbb{C})$:

$$\Delta(z_1, z_2) := \frac{|z_1 - z_2|}{\max\{1, |z_1|\} \max\{1, |z_2|\}}$$

More precisely, to allow the point at ∞, in homogeneous coordinates we write:

$$\Delta([x_1, y_1], [x_2, y_2]) := \frac{|x_1y_2 - x_2y_1|}{\max\{|x_1|, |y_1|\} \max\{|x_2|, |y_2|\}}$$
Fatou and Julia Sets

Definition
Let $\phi \in \mathbb{C}_K(z)$ be a rational function of degree $d \geq 2$.
The (classical) Fatou set $\mathcal{F} = \mathcal{F}_\phi$ of ϕ is

$$\mathcal{F} = \{ x \in \mathbb{P}^1 : \{\phi^n\}_{n \geq 0} \text{ is equicontinuous on a neighborhood of } x \}$$

$$= \{ x \in \mathbb{P}^1 : \text{for all } n \geq 1 \text{ and } y \in \mathbb{P}^1(\mathbb{C}_K) \text{ s.t. } \Delta(x, y) \text{ is small, } \Delta(\phi^n(x), \phi^n(y)) \text{ is also small.} \}$$

The (classical) Julia set $\mathcal{J} = \mathcal{J}_\phi$ is ϕ is $\mathcal{J} = \mathbb{P}^1(\mathbb{C}_K) \setminus \mathcal{F}$.

Idea:
- In the Fatou set, small errors stay small under iteration.
- In the Julia set, small errors may become large.
Basic Properties of Fatou and Julia Sets

For both \mathbb{C} and \mathbb{C}_K:

- \mathcal{F} is open, and \mathcal{J} is closed.
- $\mathcal{F}_{\phi^n} = \mathcal{F}_{\phi}$, and $\mathcal{J}_{\phi^n} = \mathcal{J}_{\phi}$.
- $\phi(\mathcal{F}) = \mathcal{F} = \phi^{-1}(\mathcal{F})$, and $\phi(\mathcal{J}) = \mathcal{J} = \phi^{-1}(\mathcal{J})$.
- All attracting periodic points are Fatou.
- All repelling periodic points are Julia.

An equivalent definition for \mathbb{C}_K:

Theorem

Let $\phi \in \mathbb{C}_K(z)$, and let $x \in \mathbb{P}^1(\mathbb{C}_K)$. Then $x \in \mathcal{F}_{\phi}$ if and only if there is a $\mathbb{P}^1(\mathbb{C}_K)$-disk $D \ni x$ such that

$$\#\mathbb{P}^1(\mathbb{C}_K) \setminus \left[\bigcup_{n \geq 0} \phi^n(D) \right] \geq 2.$$
A Quadratic Example

\[\phi(z) = z^2 + az \in \mathbb{C}_K[z]. \]

\[\text{◮ If } |a| \leq 1, \text{ then } \phi(D(0, 1)) \subseteq D(0, 1), \]
and \(\phi(\mathbb{P}^1(\mathbb{C}_K) \setminus D(0, 1)) \subseteq \mathbb{P}^1(\mathbb{C}_K) \setminus D(0, 1). \)

So \(\mathcal{F}_\phi = \mathbb{P}^1(\mathbb{C}_K), \) and \(\mathcal{J}_\phi = \emptyset. \)

\[\text{◮ If } |a| = R > 1, \text{ set } U_0 = D(0, R). \]
Then \(\phi(\mathbb{P}^1(\mathbb{C}_K) \setminus U_0) \subseteq \mathbb{P}^1(\mathbb{C}_K) \setminus U_0, \) so \(\mathbb{P}^1(\mathbb{C}_K) \setminus U_0 \subseteq \mathcal{F}_\phi. \)

For all \(n \geq 1, \) set \(U_n := \phi^{-n}(U_0). \)
Then \(U_n \) is a disjoint union of \(2^n \) closed disks of radius \(R^{1-n}. \)

\[\mathcal{J}_\phi = \bigcap_{n \geq 0} U_n \text{ is a Cantor set, and all points of } \]
\[\mathcal{F}_\phi = \mathbb{P}^1(\mathbb{C}_K) \setminus \mathcal{J}_\phi \text{ are attracted to } \infty \text{ under iteration.} \]

Similarly: Over \(\mathbb{C}_p, \) Smart and Woodcock showed \(\phi(z) = (z^p - z)/p \) has \(\mathcal{J}_\phi = \mathbb{Z}_p. \)
A Cubic Example (due to Hsia)

Assume the residue characteristic is not 2, and set

\[\phi(z) = az^3 + z^2 + bz + c, \quad \text{where } 0 < |a| < 1, \text{ and } |b|, |c| \leq 1. \]

Then \(\phi(\overline{D}(0, 1)) \subseteq \overline{D}(0, 1) \), so \(\overline{D}(0, 1) \subseteq \mathcal{F}_\phi \).

But \(\phi \) has a repelling fixed point \(\alpha \) with \(|\alpha| = |a|^{-1} > 1 \).

For all \(n \geq 1 \), there is a point \(\beta_n \in \phi^{-n}(\alpha) \) s.t. \(|\beta_n| = |a|^{-1/2^n} \).

Since \(\beta_n \in \mathcal{J}_\phi \), the set \(\mathcal{J}_\phi \) is not compact!!

Note: if we set \(U_0 = \overline{D}(0, |a|^{-1}) \), then

\[\phi(\mathbb{P}^1(\mathbb{C}_K) \setminus U_0) \subseteq \mathbb{P}^1(\mathbb{C}_K) \setminus U_0 \]

as before, and \(U_n := \phi^{-n}(U_0) \) is a disjoint union of many disks.

In fact, \(\mathcal{F}_\phi \) is the union of \(\mathbb{P}^1(\mathbb{C}_K) \setminus \bigcap_{n \geq 1} U_n \) and all preimages of \(\overline{D}(0, 1) \).
Contrasts with \mathbb{C}

<table>
<thead>
<tr>
<th>\mathbb{C}</th>
<th>\mathbb{C}_K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Some indifferent points are</td>
<td>All indifferent points are Fatou</td>
</tr>
<tr>
<td>Fatou, and some are Julia.</td>
<td></td>
</tr>
<tr>
<td>\mathcal{J} is compact</td>
<td>\mathcal{J} may not be compact</td>
</tr>
<tr>
<td>\mathcal{J} is nonempty</td>
<td>\mathcal{J} may be empty</td>
</tr>
<tr>
<td>\mathcal{F} may be empty</td>
<td>\mathcal{F} is nonempty</td>
</tr>
<tr>
<td>\mathcal{J} is the closure</td>
<td>???</td>
</tr>
<tr>
<td>of the set of repelling</td>
<td>(see Project # 1)</td>
</tr>
<tr>
<td>periodic points</td>
<td></td>
</tr>
</tbody>
</table>
A Quick Technical Note

The field \mathbb{C}_K is complete, but it is usually not spherically complete.

That is, it is possible to have a decreasing chain of disks

$$D_1 \supseteq D_2 \supseteq D_3 \supseteq \cdots$$

in a (not spherically complete field) \mathbb{C}_K such that

$$\bigcap_{n \geq 1} D_n = \emptyset.$$

In this case, the disks D_n must have radius bounded below by some $R > 0$.

For example, \mathbb{C}_p and the Puiseux series field \mathbb{L} are not spherically complete.