A SOLUTION TO EXERCISE 8.16 OF DYNAMICS IN ONE NON-ARCHIMEDEAN VARIABLE

ROBERT L. BENEDETTO

Abstract

Exercise 8.16 of my Dynamics in One Non-Archimedean Variable book asks for a proof of Theorem $8.15(\mathrm{f})$, that the (Berkovich space) boundary of the filled Julia set of a polynomial coincides with its Julia set. The proof is pretty hard, though, so here's a sketch.

Let $\phi \in \mathbb{C}_{v}(z)$ be a rational function of degree at least 2. The Berkovich filled Julia set of ϕ is

$$
\mathcal{K}_{\phi, \text { an }}:=\left\{\zeta \in \mathbb{P}_{\text {an }}^{1}: \lim _{n \rightarrow \infty} \phi^{n}(\zeta) \neq \infty\right\}
$$

Theorem 8.15(f) of Dynamics in One Non-Archimedean Variable states the following:
Theorem 8.15(f). Let $\phi \in \mathbb{C}_{v}(z)$ be a rational function of degree at least 2 , with Berkovich Julia set $\mathcal{J}_{\phi, \text { an }}$ and Berkovich filled Julia set $\mathcal{K}_{\phi, \text { an }}$. Prove that $\mathcal{J}_{\phi, \text { an }}=\partial \mathcal{K}_{\phi, \text { an }}$.

In the book I punt the proof to Exercise 8.16, saying the proof is "slightly different" from the type I analog that appears as Proposition 5.27. But that's quite misleading; the proof is significantly harder than that of Proposition 5.27. So here is a sketch of a proof, using ideas that appear the proof of Theorem 9.5, which includes a proof of a more general statement about attracting Fatou components.

Proof. As in Proposition 5.27, there is some $R>0$ so that if we set $V_{0}:=\mathbb{P}_{\text {an }}^{1} \backslash \bar{D}_{\text {an }}(0, R)$, then $\phi\left(V_{0}\right) \subseteq V_{0}$, with $\phi^{n}(\xi) \rightarrow \infty$ for all $\xi \in V_{0}$.

For each $n \geq 1$, define $V_{n}:=\phi^{-n}\left(V_{0}\right)$, which is a single connected open affinoid, since all d^{n} preimages of ∞ are ∞ itself. Since $\phi\left(V_{0}\right) \subseteq V_{0}$, we have $V_{0} \subseteq V_{1} \subseteq V_{2} \subseteq \cdots$. Thus,

$$
\mathcal{K}_{\phi, \text { an }}=\mathbb{P}_{\text {an }}^{1} \backslash V, \quad \text { where } \quad V:=\bigcup_{n \geq 0} V_{n} .
$$

In particular, V is an open set (and is easily seen to be connected), $\mathcal{K}_{\phi, \text { an }}$ is closed, and they have the same boundary $\partial V=\partial \mathcal{K}_{\phi, \text { an }}$.

To show $\mathcal{J}_{\phi, \text { an }}=\partial \mathcal{K}_{\phi, \text { an }}$, the inclusion (\subseteq) is easy, as follows. We have $V_{0} \subset \mathcal{F}_{\phi, \text { an }}$ since $\phi\left(V_{0}\right) \subseteq V_{0}$ and V_{0} is open. Therefore, by Proposition 8.2(b), we have $V \subseteq \mathcal{F}_{\phi, \text { an }}$; taking complements yields $\partial \mathcal{K}_{\phi, \text { an }} \supseteq \mathcal{J}_{\phi, \text { an }}$.

Next, a short Lemma:
Lemma. Let $\xi \in \partial \mathcal{K}_{\phi, \text { an }}$.
(1) If $\xi^{\prime} \in \mathbb{P}_{\mathrm{an}}^{1} \backslash\{\xi\}$ lies between ξ and ∞, then $\xi \in V$.
(2) $\phi(\xi) \in \partial \mathcal{K}_{\phi, \text { an }}$.
(The proof of the Lemma is quick and left to reader.)

The rest of the proof of the Theorem is devoted to proving that $\partial \mathcal{K}_{\phi, \text { an }} \subseteq \mathcal{J}_{\phi, \text { an }}$. Given a point $\zeta \in \partial \mathcal{K}_{\phi, \text { an }}$ and an open set W containing ζ, we must show $\bigcup_{n \geq 0} W$ omits only finitely many points of $\mathbb{P}_{\mathrm{an}}^{1}$.

If ζ is of type II or III, let C_{0} be the closed disk corresponding to ζ. Then there is a slightly larger open disk W_{0} such that the annulus $W^{\prime}:=W_{0} \backslash C_{0}$ is contained in W.

Otherwise, i.e. if ζ is a point of type I or IV, then there is an open disk W_{0} with $\xi \in W_{0} \subseteq W$. Let $W^{\prime}:=W_{0}$ in this case.

In either case, let ζ^{\prime} be the unique boundary point of the disk W_{0}. For each $n \geq 1$, define $W_{n}:=\phi^{n}\left(W_{0}\right)$ and (in the type II or III case) $C_{n}:=\phi^{n}\left(C_{0}\right)$.

Since each W_{n} is an open disk, ϕ is a polynomial, and $\zeta \in W_{0}$, a quick induction shows that for every $n \geq 0$, we have:

- $\phi^{n}(\zeta) \in W_{n}$,
- in the type II and III case, $C_{n} \subseteq W_{n}$, with $\partial C_{n}=\left\{\phi^{n}(\zeta)\right\}$,
- $\phi^{n}\left(W^{\prime}\right)$ is either W_{n} (with one boundary point $\phi^{n}\left(\zeta^{\prime}\right)$) or else $W_{n} \backslash C_{n}$ (with two boundary points, $\phi^{n}(\zeta)$ and $\left.\phi^{n}\left(\zeta^{\prime}\right)\right)$.
The disk W_{0} is an open neighborhood of $\zeta \in \partial \mathcal{K}_{\phi, \text { an }}$, and hence it contains points of V, which approach ∞ under iteration. On the other hand, every W_{n} contains $\phi^{n}(\zeta) \in$ $\mathcal{K}_{\phi, \text { an }} \subseteq \bar{D}_{\text {an }}(0, R)$. Thus, there is some $N \geq 0$ such that for every $n \geq N$, we have $W_{n} \supseteq \bar{D}_{\text {an }}(0, R)$. We consider three cases.

Case 1. There exists $m \geq N$ such that $\phi^{m}\left(W^{\prime}\right)=W_{m}$. (This case includes the case that ξ is of type I or IV.) Since the boundary points $\phi^{n}\left(\zeta^{\prime}\right)$ approach ∞, it follows that

$$
\bigcup_{n \geq 0} \phi^{n}(W) \supseteq \bigcup_{n \geq m} \phi^{n}\left(W^{\prime}\right)=\bigcup_{n \geq m} W_{n}=\mathbb{A}_{\mathrm{an}}^{1},
$$

and hence W is not dynamically stable, as desired.
Case 2: We are not in Case 1, but there exist $\ell>m \geq N$ such that $\phi^{\ell}(\zeta) \neq \phi^{m}(\zeta)$. By the Lemma, neither of $\phi^{\ell}(\zeta)$ nor $\phi^{m}(\zeta)$ lies between the other and ∞, and hence the two closed sets C_{ℓ} and C_{m} are disjoint. It follows that $\phi^{\ell}\left(W^{\prime}\right) \cup \phi^{m}\left(W^{\prime}\right)=W_{\ell}$. Therefore, as in Case 1, we have

$$
\bigcup_{n \geq 0} \phi^{n}(W) \supseteq \bigcup_{n \geq m} \phi^{n}\left(W^{\prime}\right)=\bigcup_{n \geq \ell} W_{n}=\mathbb{A}_{\mathrm{an}}^{1},
$$

and again W is not dynamically stable.
Case 3: Finally, assume neither Case 1 nor Case 2 arises. Thus, ξ is of type II or III, and for all $n \geq N$, we have $\phi^{n}(\zeta)=\phi^{N}(\zeta)$, and $\phi^{n}\left(W^{\prime}\right)=W_{n} \backslash C_{N}$. Then $\xi:=\phi^{N}(\zeta)$ is a fixed point of ϕ.

Let \boldsymbol{u} be the direction at ξ towards ∞, and let $m:=\operatorname{deg}_{\xi, \boldsymbol{u}}(\phi)$ be the local degree of ϕ in that direction. Then there is an open disk disk $D_{\mathrm{an}}(b, t)$ containing ξ (and hence $\left.C_{N}\right)$ small enough that ϕ has Weierstrass degree m on the open set $U:=D_{\text {an }}(b, t) \backslash C_{N}$ extending from ξ in the direction \boldsymbol{u}. If $m=1$, then since ϕ is a polynomial fixing ξ, we have $\phi(U)=U$, and hence $\phi\left(D_{\mathrm{an}}(b, t)\right)=D_{\mathrm{an}}(b, t)$. Therefore all points of $D_{\mathrm{an}}(b, t)$ remain bounded under iteration of ϕ, contradicting the fact that $\xi \in \partial \mathcal{K}_{\phi, \text { an }}$.

By this contradiction, we must have $m \geq 2$. Thus, ξ is a repelling fixed point; by Theorem 8.7, it is of type II (not that we need that here) and lies in $\mathcal{J}_{\phi, \text { an }}$, as desired.

