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Introduction

This document is intended to help describe how to undertake analyses introduced as examples in the
Sixth Edition of Introduction to the Practice of Statistics (2002) by David Moore, George McCabe
and Bruce Craig. More information about the book can be found at http://bcs.whfreeman.com/
ips6e/. This file as well as the associated knitr reproducible analysis source file can be found at
http://www.math.smith.edu/~nhorton/ips6e.

This work leverages initiatives undertaken by Project MOSAIC (http://www.mosaic-web.
org), an NSF-funded effort to improve the teaching of statistics, calculus, science and computing
in the undergraduate curriculum. In particular, we utilize the mosaic package, which was written to
simplify the use of R for introductory statistics courses. A short summary of the R needed to teach
introductory statistics can be found in the mosaic package vignette (http://cran.r-project.
org/web/packages/mosaic/vignettes/MinimalR.pdf).

To use a package within R, it must be installed (one time), and loaded (each session). The
package can be installed using the following command:

> install.packages( ) # note the quotation marks

The # character is a comment in R, and all text after that on the current line is ignored.
Once the package is installed (one time only), it can be loaded by running the command:
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> require(mosaic)

This needs to be done once per session.
We also set some options to improve legibility of graphs and output.

> trellis.par.set(theme=col.mosaic()) # get a better color scheme for lattice
> options(digits=3)

The specific goal of this document is to demonstrate how to replicate the analysis described in
Chapter 16: Bootstrap Methods and Permutation Tests.

1 The Bootstrap Idea

The bootstrap is a fundamental concept in statistical computing, and the requisite calculations are
very easy to perform in R.
The repair time data from Verizon shown in Figure 16.1 (page 16-4) can be plotted thusly:

> verizon = read.csv( )
> xhistogram(“time, data=verizon, nint=100)
> with(verizon, qgqnorm(time, ylab= times ))
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Theoretical Quantiles

A command to facilitate resampling within the mosaic package is resample (). We get our first
example on page 16-5, which considers a subset of size n = 6 from the Verizon dataset.

> data = ¢(3.12, 0, 1.57, 19.67, 0.22, 2.2)
> mean(data)

[1] 4.46

> sl = resample(data)
> s1

[1] 0.00 0.22 1.57 2.20 2.20 3.12
> mean(sl)
[1] 1.55

> s2 = resample(data)
> s2

[1] 19.67 2.20 19.67 1.57 2.20 1.57
> mean(s2)
[1] 7.81

> 83 = resample(data)
> s3

[1] 0.22 19.67 3.12 2.20 0.00 3.12
> mean(s3)

[1] 4.72
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Note that the results shown here do not match the book, due to the random nature of resampling

In Figure 16.3 (page 16-6) we visualize a bootstrap distribution. To construct such a thing, we
use the do() command, which simply repeats some operation many times, and collects the results
in a data frame.

> mean(“time, data=verizon)

[1] 8.41

> mean(“time, data=resample(verizon))
[1] 8.26

> mean(“time, data=resample(verizon))
[1] 8.94

> mean(“time, data=resample(verizon))
[1] 8.66

> bootstrap = do(1000) * mean(time, data=resample(verizon))
> favstats(“result, data=bootstrap)

min Q1 median Q3 max mean sd n missing
7.25 8.17 8.41 8.63 9.76 8.41 0.362 1000 0

> # Theoretical standard error
> 14.69 / sqrt(1664)

[1] 0.36

Note how the theoretical standard error (i.e. standard deviation of the sampling distribution of
the mean) compares to the standard deviation from the bootstrap sample.

> xhistogram(“result, data=bootstrap, fit= )
> with(bootstrap, qgqnorm(result, ylab= resamples ))
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2 First Steps in Using the Bootstrap

Table 16.1 and Figure 16.6 (page 16-14) display residential and commercial real estate prices in
Seattle.

seattle = read.csv("http://www.math.smith.edu/ips6eR/ch16/tal6_001.csv")
names (seattle) = c('"price")

xhistogram(“price, data=seattle)

with(seattle, qgnorm(price, ylab="Selling Price (in $1000)"))

vV V V V
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Theoretical Quantiles

In this example we are working with the 25% trimmed mean. To find the 25% trimmed mean,
we grab only the middle 50% of the data, and compute the mean on this subset. This can be
achieved using the trim argument to mean().
> mean(“price, trim=0.25, data=seattle)

[1] 244

> bootstrap = do(1000) * mean(“price, trim=0.25, data=resample(seattle))
> favstats(“result, data=bootstrap)

min Q1 median (3 max mean sd n missing

194 233 244 256 329 245 18 1000 0

> xhistogram(“result, data=bootstrap, fit= )

> with(bootstrap, qqnorm(result, ylab= resamples ))
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We compute the bias as the difference between the average of the bootstrapped means and the
trimmed mean from the original sample.

> # bias
> mean(“result, data=bootstrap) - mean("price, trim=0.25, data=seattle)

[1] 0.539

The computation of the confidence interval in Example 16.5 (page 16-16) makes use of the
t-distribution.

> se.boot = sd("result, bootstrap)

> t.star = qt(0.975, df=49)
> t.star
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[1] 2.01

> moe = t.star * se.boot
> mean(“price, trim=0.25, data=seattle) + c(-moe, moe)

[1] 208 280
In Example 16.6, we compare the means of two groups of service providers.

> CLEC = read.csv( )
> mean(Time ~ Group, data=CLEC)

CLEC TILEC
16.51 8.41

> densityplot(“Time, groups=Group, data=CLEC)
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We then construct a bootstrap distribution for the difference in means among the two groups.

> bstrap = do(1000) * diff (mean(Time ~ Group, data=resample(CLEC)))
> favstats("ILEC, data=bstrap)

min Q1 median Q3 max mean sd n missing
-25.3 -10.8 -7.64 -5 0.917 -8.2 4.32 1000 0

Note that the resulting distribution is not quite so normal. Thus, we can use the quantile
method to produce a bootstrap percentile confidence interval for the mean.

> xhistogram(“ILEC, fit= , data=bstrap)
> gdata(c(0.025, 0.975), vals=ILEC, data=bstrap)
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3 How Accurate is a Bootstrap Distribution?

4 Bootstrap Confidence Intervals

We return to the construction of a confidence interval for the mean price of real estate in Seattle
explored in Example 16-5. To the t-based confidence interval we constructed previously, we can
add the percentile-based confidence interval

> mean(“price, trim=0.25, data=seattle) + c(-moe, moe)
[1] 208 280
> qdata(c(0.025, 0.975), vals=result, data=bootstrap)

2.5% 97.5%
212 281

Note that the bootstrapped confidence interval is not quite symmetric with respect to the sample
mean of 244.
4.1 Confidence intervals for the correlation

In Example 16.10 (page 16-35), we explore the correlation between batting average and player
salary in Major League Baseball. The value of the correlation coefficient among the 50 players in
Table 16.2 (page 16-36) is relatively small.
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MLB = read.csv(
names (MLB) [2] =
xyplot(Salary ~
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, ylab="Salary )
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[1] 0.107

with(MLB, cor(Salary, Average))
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To construct a bootstrap distribution for the correlation between batting average and salary,

we resample the players and compute the correlation coefficient.

> cor.boot = do(1000) * with(resample(MLB), cor(Salary, Average))

> xhistogram(“result, data=cor.boot, fit= )
> with(cor.boot, qgnorm(result, ylab=
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Theoretical Quantiles
In this case, the t-based confidence interval for the correlation coefficient

> se.boot = sd("result, cor.boot)
> t.star = qt(0.975, df=(nrow(MLB) - 1))
> t.star

[1] 2.01

> moe = t.star * se.boot
> with(MLB, cor(Salary, Average)) + c(-moe, moe)

[1] -0.153 0.367

is in reasonable agreement with the percentile-based method.

Introduction to the Practice of Statistics using R: Chapter 16



4 BOOTSTRAP CONFIDENCE INTERVALS

12

> qdata(c(0.025, 0.975), vals=result, data=cor.boot)

2.5%, 97.5}
-0.137 0.366
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