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Introduction

This document is intended to help describe how to undertake analyses introduced as examples in the
Sixth Edition of Introduction to the Practice of Statistics (2009) by David Moore, George McCabe
and Bruce Craig. More information about the book can be found at http://bcs.whfreeman.com/
ips6e/. This file as well as the associated knitr reproducible analysis source file can be found at
http://www.math.smith.edu/~nhorton/ips6e.

This work leverages initiatives undertaken by Project MOSAIC (http://www.mosaic-web.
org), an NSF-funded effort to improve the teaching of statistics, calculus, science and computing
in the undergraduate curriculum. In particular, we utilize the mosaic package, which was written to
simplify the use of R for introductory statistics courses. A short summary of the R needed to teach
introductory statistics can be found in the mosaic package vignette (http://cran.r-project.
org/web/packages/mosaic/vignettes/MinimalR.pdf).

To use a package within R, it must be installed (one time), and loaded (each session). The
package can be installed using the following command:

> install.packages( ) # note the quotation marks

The # character is a comment in R, and all text after that on the current line is ignored.
Once the package is installed (one time only), it can be loaded by running the command:
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> require(mosaic)

This needs to be done once per session.
We also set some options to improve legibility of graphs and output.

> trellis.par.set(theme=col.mosaic()) # get a better color scheme for lattice
> options(digits=3)

The specific goal of this document is to demonstrate how to replicate the analysis described in
Chapter 6: Introduction to Inference.

1 Estimating with Confidence

First, let’s generate a random sample of 500 SAT scores drawn from a normal distribution with
mean 500 and standard deviation 100. To do this we use the rnorm() function, which draws from
a normal distribution.

> mu = 500

> sigma = 100

> x = rnorm(500, mean=mu, sd=sigma)
> favstats(x)

min Q1 median (3 max mean sd n missing
195 430 500 566 773 500 98.6 500 0

To compute a confidence interval for the mean, we’ll use a simple function that finds a confidence
interval for the mean of any vector of data x, given a specified significance level and the true
(assumed known) population standard deviation. Note that 95% is the default level of confidence.

> meanconfint = function (x, sigma, level = 0.95, ...) {
se = sigma / sqrt(length(x))
mu = mean(x)
z = gnorm(1l - (1 - level)/2)
out = c(mu, mu - z * se, mu + z * se)
names (out) = c( , , )
return (out)

}

> meanconfint(x, sigma = sigma)

mean lower upper
500 492 509

At the bottom of page 358, many such confidence intervals are calculated. We can simulate
this using our function. The do() function will repeat any operation a specified number of times,
and return a data frame of the results. The apply () family of functions provide a powerful way to
apply an operation to the rows or columns of a data frame. Here it lets us repeat an operation for
each of the 50 sets of 500 random numbers.
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> randomx = do(50) * rnorm(500, mean=mu, sd=sigma)
> ci = data.frame(t(apply(randomx, 1, meanconfint, sigma=sigma)))
> head(ci, 3)

mean lower upper
1 498 490 507
2 497 488 505
3 499 490 507

Let’s try to visualize these intervals in a manner analogous to the plot on the bottom of page
358.

> xyplot(l:nrow(ci) ~ mean, data=ci, xlim=range(ci), xlab= , ylab=

> ladd(panel.abline(v=500, col= , 1ty=2))

> ladd(with(ci, panel.arrows(x0 = lower, yO=1:nrow(ci), yl=1:nrow(ci), cex=0.5,
x1=upper, code=3)))
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We see that sometimes (e.g. simulation 41) the confidence interval does not cover the true
population mean (500 points).
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Note that we can consider confidence levels other than 0.95 by specifying the level argument.
Here’s how we compute a 90% confidence interval.

> head(t(apply(randomx, 1, meanconfint, sigma=sigma, level=0.9)), 3)

mean lower upper
[1,] 498 491 506
[2,] 497 489 504
[3,1] 499 491 506

The 90% confidence intervals are narrower than the 95% confidence intervals, since we sacrifice
some accuracy in exchange for increased confidence that the interval will contain the true mean.

In Example 6.4 (page 361), we are asked to compute a 95% confidence interval for a sample
mean of $18,900 in undergraduate debt, computed from a sample of 1280 borrowers. The standard
deviation of the population is known to be $49,000. Since we want a 95% confidence interval,
we need to find the z-score that corresponds to 0.025 (or equivalently 0.0975), since 95% of the
standard normal distribution lies between these two values.

> z.star = gnorm(0.975)
> z.star

[1] 1.96
Then we compute the margin or error and the confidence interval by:

> se = z.star * (49000) / sqrt(1280)
> se

[1] 2684
> 18900 + c(-se, se)

[1] 16216 21584

In Example 6.6 (page 364), we change the confidence level to 99%. Thus, we need to compute
a different value of z*.

> z.star2 = gnorm(0.995)
> z.star2

[1] 2.58

> se2 = z.star2 * (49000) / sqrt(1280)
> se2

[1] 3528
> 18900 + c(-se2, se2)

[1] 15372 22428

Introduction to the Practice of Statistics using R: Chapter 6



2 TESTS OF SIGNIFICANCE 5

1.1 Beyond the Basics

We’ll discuss the bootstrap in much greater detail in Chapter 16. Here, we can use the resample ()
function from mosaic to quickly compute a bootstrap sample.

> time = c(190.5, 109, 95.5, 137)
> resample(time)

[1] 190.5 95.5 190.5 109.0

> bootstrap = do(1000) * mean(resample(time))
> densityplot(“result, data=bootstrap)
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2 Tests of Significance

In Example 6.12 (page 378), we compute a p-value for the observed difference of $4,100. Note that
we need to multiply the cumulative probability in the right-hand tail by 2 for a two-sided test.

>z = (4100 - 0) / 3000
> z
(1] 1.37

> 2 * (1 - pnorm(z))
[1] 0.172

The z-test for a population mean on page 383 can be computed using the pbinom().
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> # one-sided test for right tail probability
> pnorm(2, lower.tail=FALSE)

[1] 0.0228

> # one-sided test for left tail probability
> pnorm(-2)

[1] 0.0228

> # two-sided test
> 2 x pnorm(2, lower.tail=FALSE)

[1] 0.0455

In Example 6.16 (page 385), we find the right-hand tail probability.
> pnorm(461, mean=450, sd=100 / sqrt(500), lower.tail=FALSE)
[1] 0.00695

> xpnorm(2.46)

If X ~ N(O,1), then

P(X <= 2.46)
P(X > 2.46)
[1] 0.993

P(Z <= 2.46)
P(Z > 2.46)

0.9931
0.0069

Z40
05 - (z=2.46) B
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3 Use and Abuse of Tests

In Example 6.84 (page 396), we test for significance. Note the use of a one-sided test.

> z1 = (541.4 - 525) / (100 / sqrt(100))
> pnorm(zl, lower.tail=FALSE)

[1] 0.0505

> z2 = (541.5 - 525) / (100 / sqrt(100))
> pnorm(z2, lower.tail=FALSE)

[1] 0.0495

4 Power and Inference as a Decision

Example 6.29 (page 402) considers the power for a study with n=25 subjects, where a one-sided
alternative is tested at an « level of 0.05 and the population standard deviation is assumed known
and equals o = 2.

> xgqnorm( .95, mean=0, sd=2/sqrt(25))

0.95
0.05

P(X <= 0.657941450780589)
P(X > 0.657941450780589)
[1] 0.658
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We can now compare this to the distribution when the alternative is true (u = 1).
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> xpnorm(0.658, mean=1, sd=2/sqrt(25))

If X ~ N(1,0.4), then

P(X <= 0.658) = P(Z <= -0.855) = 0.1963
P(X > 0.658) = P(Z > -0.855) = 0.8037
[1] 0.196
| | L}I.OOO | | | |
(z=-0.855) i

1.2

density

We see that the power is 0.80.
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