Introduction to the Practice of Statistics using R: Chapter 3

Nicholas J. Horton* Ben Baumer

March 10, 2013

Contents

1 Design of experiments 2
1.1 Randomizing subjects 2
2 Sampling design 2
2.1 Simple random samples 2
3 Toward statistical inference 3
3.1 Simulate a random sample 3
3.2 Capture-recapture sampling 6

Introduction

This document is intended to help describe how to undertake analyses introduced as examples in the Sixth Edition of Introduction to the Practice of Statistics (2009) by David Moore, George McCabe and Bruce Craig. More information about the book can be found at http://bcs.whfreeman.com/ ips6e/. This file as well as the associated knitr reproducible analysis source file can be found at http://www.math.smith.edu/~nhorton/ips6e.

This work leverages initiatives undertaken by Project MOSAIC (http://www.mosaic-web. org), an NSF-funded effort to improve the teaching of statistics, calculus, science and computing in the undergraduate curriculum. In particular, we utilize the mosaic package, which was written to simplify the use of R for introductory statistics courses. A short summary of the R needed to teach introductory statistics can be found in the mosaic package vignette (http://cran.r-project. org/web/packages/mosaic/vignettes/MinimalR.pdf).

To use a package within R, it must be installed (one time), and loaded (each session). The package can be installed using the following command:

```
> install.packages('mosaic') # note the quotation marks
```

[^0]The \# character is a comment in R, and all text after that on the current line is ignored.
Once the package is installed (one time only), it can be loaded by running the command:

```
> require(mosaic)
```

This needs to be done once per session.
We also set some options to improve legibility of graphs and output.

```
> trellis.par.set(theme=col.mosaic()) # get a better color scheme for lattice
> options(digits=3)
```

The specific goal of this document is to demonstrate how to replicate the analysis described in Chapter 3: Producing Data.

1 Design of experiments

1.1 Randomizing subjects

It's straightforward to randomly divide 40 students into two groups of 20 students each (as described in Example 3.11 on page 185).

```
> students = 1:40 # equivalent to seq(from=1, to=40, by=1)
> group1 = sample(students, size=20)
> sort(group1)
```

```
[1] 1
> group2 = students[-group1] # all but those values are included
> sort(group2)
```

[1] $\begin{array}{lllllllllllllllllllll}4 & 5 & 7 & 9 & 10 & 11 & 13 & 17 & 20 & 22 & 24 & 25 & 26 & 27 & 28 & 32 & 35 & 37 & 39 & 40\end{array}$

2 Sampling design

2.1 Simple random samples

We reproduce a random sampling of resorts (from Figure 3.8, page 202).

```
> resorts = c("Aloha Kai", "Captiva", "Palm Tree", "Sea Shell", "Anchor Down",
    "Casa del Mar", "Radisson", "Silver Beach")
> # generate a SRS of size 3
> sampled = sample(resorts, size=3)
> sampled
[1] "Silver Beach" "Anchor Down" "Sea Shell"
```

Introduction to the Practice of Statistics using R: Chapter 3

3 Toward statistical inference

3.1 Simulate a random sample

It's straightforward to use R to generate simple random samples. Example 3.32 (page 214) describes how this is done by using a table of random digits. It's more generalizable to do this with a set of possible options each with specified probabilities (probability frustrated $=0.6$, probability notfrustrated=0.4):

```
> srs1 = sample(c("Frustrating", "Not-frustrating"), size=100, prob=c(0.6, 0.4),
    replace=TRUE)
> tally(srs1)
        Frustrating Not-frustrating Total
    62 38 100
```

We can repeat the process, which will (generally) give different answers.
$>\mathrm{n}=100$
$>\mathrm{n}$
[1] 100

```
> tally(sample(c("Frustrating", "Not-frustrating"), size=n, prob=c(0.6, 0.4),
```

 replace=TRUE))
 Frustrating Not-frustrating Total
 6238100
 > tally(sample(c("Frustrating", "Not-frustrating"), size=n, prob=c(0.6, 0.4),
replace=TRUE))
Frustrating Not-frustrating Total
$61 \quad 39100$
> tally(sample(c("Frustrating", "Not-frustrating"), size=n, prob=c(0.6, 0.4),
replace=TRUE))
Frustrating Not-frustrating Total
$63 \quad 37100$

We can repeat the process many times using the do() function, which saves the results.

```
> res = do(1000) * tally(sample(c("Frustrating", "Not-frustrating"), size=n,
    prob=c(0.6, 0.4), replace=TRUE))
> histogram(~ Frustrating, xlab="Number reporting shopping frustrating", data=res)
```


We see that the sampling distribution for the number reporting Frustrating in m=1000 simple random samples each of size $n=100$ is centered at the value of around 60 , which we would expect since the true probability of being Frustrating is in fact $p=0.60$.

The results are equivalent if rescaled as a proportion (by dividing by the sample size).

```
> sd(~ Frustrating/n, data=res)
[1] 0.0493
> histogram(~ Frustrating/n, xlab="Proportion reporting shopping frustrating", data=res)
```


What happens if we take samples of size $\mathrm{n}=2500$ (as displayed in Example 3.33, on pages 214-215).
$>\mathrm{n}=2500$
$>\mathrm{n}$
[1] 2500

```
> res = do(1000) * tally(sample(c("Frustrating", "Not-frustrating"), size=n,
    prob=c(0.6, 0.4), replace=TRUE))
> sd(~ Frustrating/n, data=res)
[1] 0.00985
> histogram(~ Frustrating/n, xlab="Proportion reporting shopping frustrating", data=res)
```


The sampling distribution is much narrower, given the much larger sample size.

3.2 Capture-recapture sampling

R can be used as a calculator, as for the calculations in Example 3.34 (page 220).
> 200*120/12
[1] 2000

[^0]: *Department of Mathematics and Statistics, Smith College, nhorton@smith.edu

