
Introduction to the Practice of Statistics using R:

Chapter 2

Ben Baumer Nicholas J. Horton∗

July 31, 2013

Contents

1 Scatterplots 2
1.1 Adding categorical variables to scatterplots . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 More examples of scatterplots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Correlation 6

3 Least-Squares Regression 7
3.1 Fitting a line to data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Least-squares regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Correlation and Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.5 Transforming Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Cautions about Correlation and Regression 13
4.1 Outliers and influential observations . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Beware the lurking variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Introduction

This document is intended to help describe how to undertake analyses introduced as examples in the
Sixth Edition of Introduction to the Practice of Statistics (2009) by David Moore, George McCabe
and Bruce Craig. More information about the book can be found at http://bcs.whfreeman.com/
ips6e/. This file as well as the associated knitr reproducible analysis source file can be found at
http://www.math.smith.edu/~nhorton/ips6e.

This work leverages initiatives undertaken by Project MOSAIC (http://www.mosaic-web.
org), an NSF-funded effort to improve the teaching of statistics, calculus, science and computing
in the undergraduate curriculum. In particular, we utilize the mosaic package, which was written to
simplify the use of R for introductory statistics courses. A short summary of the R needed to teach
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introductory statistics can be found in the mosaic package vignette (http://cran.r-project.
org/web/packages/mosaic/vignettes/MinimalR.pdf).

To use a package within R, it must be installed (one time), and loaded (each session). The
package can be installed using the following command:

> install.packages('mosaic') # note the quotation marks

The # character is a comment in R, and all text after that on the current line is ignored.
This chapter also references a dataset from the second edition of The Statistical Sleuth, so this

must be installed as well.

> install.packages('Sleuth2') # note the quotation marks

Once the package is installed (one time only), they can be loaded by running the command:

> require(mosaic)

> require(Sleuth2)

This needs to be done once per session.
We also set some options to improve legibility of graphs and output.

> trellis.par.set(theme=col.mosaic()) # get a better color scheme for lattice

> options(digits=3)

The specific goal of this document is to demonstrate how to replicate the analysis described in
Chapter 2: Looking at Data (Relationships).

1 Scatterplots

Example 2.6 (page 87) shows a scatterplot of the average SAT scores for all 50 states and the
District of Columbia.

> SAT = read.csv("http://www.math.smith.edu/ips6eR/ch02/eg02_006.csv")

> head(SAT)

state percent satv satm total

1 Alabama 10 559 552 1111

2 Alaska 55 518 518 1036

3 Arizona 38 524 525 1049

4 Arkansas 6 564 554 1118

5 California 54 499 519 1018

6 Colorado 27 551 553 1104

> plotPoints(total ~ percent, data=SAT, xlab="Percent taking SAT",

ylab="Mean SAT total score", pch=19)

Introduction to the Practice of Statistics using R: Chapter 2
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This can also be generated using the xyplot() function.

1.1 Adding categorical variables to scatterplots

Figure 2.2 (page 89) illustrates the use of different plotting symbols as a means of distinguishing
levels of a categorical variable in a scatterplot. This can be achieved just as easily using color and
the groups attribute. First, we assign a region to each state. This can be done using the transform
and ifelse commands.

> midwest = c("Ohio", "Michigan", "Wisconsin", "Indiana", "Illinois", "Minnesota"

, "Iowa", "NorthDakota", "SouthDakota", "Nebraska"

, "Kansas", "Missouri")

> northeast = c("Maine", "NewHampshire", "Vermont", "Massachusetts", "Connecticut"

, "RhodeIsland", "NewYork", "NewJersey", "Pennsylvania")

> SAT = transform(SAT, region = ifelse(state %in% midwest, "midwest",

ifelse(state %in% northeast, "northeast", NA)))

Now that the region variable is set, we can use the groups argument to separate the states by
color. Adding specific labels can be achieved by using ladd and panel.text to add things to an
existing plot. Note the use of the subset() function to restrict the states which are being plotted
and labelled.

> plotPoints(total ~ percent, groups=region, data=subset(SAT, !is.na(region)),

xlab="Percent taking SAT", ylab="Mean SAT total score", pch=c("m", "e"),

cex=1.5)

> SAT.labels = subset(SAT, state %in% c("Ohio", "Indiana"))

> with(SAT.labels, ladd(panel.text(percent, total, state, pos=1)))

Introduction to the Practice of Statistics using R: Chapter 2
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1.2 More examples of scatterplots

Example 2.7 (page 90) concerns the Trans-Alaska Pipeline. The dataset is in the following format:

> Oil = read.csv("http://www.math.smith.edu/ips6eR/ch02/eg02_007.csv")

> head(Oil)

field lab

1 18 20.2

2 38 56.0

3 15 12.5

4 20 21.2

5 18 15.5

6 36 39.0

We can add a straight line to a plot using the panel.abline function. In this we specify the
line y = x by giving the first argument (the intercept) as 0 and the second argument (the slope) as
1. Thus, the abline is y = a + bx.

> plotPoints(field ~ lab, data=Oil, xlab="Laboratory Measurement",

ylab="Field measurement", pch=19)

> ladd(panel.abline(a=0, b=1, col="red"))

Introduction to the Practice of Statistics using R: Chapter 2
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Example 2.8 (page 91) relates the density of perch to the proportion that are killed by predators.

> Perch = read.csv("http://www.math.smith.edu/ips6eR/ch02/eg02_008.csv")

> head(Perch)

perch killed

1 10 0.0

2 10 0.1

3 10 0.3

4 10 0.3

5 20 0.2

6 20 0.3

Figure 2.4 (pagee 92) shows the relationship between perch density and the proportion killed.
Note that some data points occur multiple times. Although the textbook uses different plot marks
to distinguish single instances from those with multiplicity, we can use transparency to achieve the
same effect.

> plotPoints(killed ~ perch, data=Perch, xlab="Perch per pen",

ylab="Proportion Eaten", pch=19, cex=1.5, alpha=0.5)

> perch.means = mean(~killed | perch, data=Perch)

> perch.means

10 20 40 60

0.175 0.350 0.425 0.646

> ladd(panel.lines(names(perch.means), perch.means, col="red"))

Introduction to the Practice of Statistics using R: Chapter 2
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Note the use of the bar notation for computing the groupwise means.

1.3 Smoothing

Because the data for Figure 2.5 (page 93), we display how to add a scatterplot smoother to a figure
using data from the HELP (Health Evaluation and Linkage to Primary Care) study.

> xyplot(cesd ~ pcs, type=c("p", "smooth"), lwd=3, data=HELPrct)
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2 Correlation

Correlation can be computed using the cor() function. For example, we can create two random
vector and compute their correlation:

Introduction to the Practice of Statistics using R: Chapter 2
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> x = runif(100)

> y = runif(100)

> cor(x,y)

[1] -0.0873

Of course, because the random variables are generated independently of each other, the sample
correlation should be close to zero. Moreover, you can compute the pairwise correlation coefficients
for more than two vectors at one time.

> z = runif(100)

> cor(data.frame(x,y,z))

x y z

x 1.0000 -0.0873 -0.0683

y -0.0873 1.0000 -0.1044

z -0.0683 -0.1044 1.0000

The 1’s along the diagonal indicate the correlation of a vector with itself.

3 Least-Squares Regression

Figure 2.11 (page 109) shows the relationship between non-exercise activity (nea) and fat gain after
8 weeks of overeating.

> Fat = read.csv("http://www.math.smith.edu/ips6eR/ch02/eg02_012.csv")

> head(Fat)

nea fat

1 -94 4.2

2 -57 3.0

3 -29 3.7

4 135 2.7

5 143 3.2

6 151 3.6

> xyplot(fat ~ nea, data=Fat, xlab="Nonexercise activity (calories)",

ylab="Fat gain (kilograms)", pch=19)

Introduction to the Practice of Statistics using R: Chapter 2
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3.1 Fitting a line to data

If we just want to add the least squares regression line to the plot, we can specificy the ”r” value
for the type argument to the plotting function.

> plotPoints(fat ~ nea, xlab="Nonexercise activity (calories)",

ylab="Fat gain (kilograms)", pch=19, type=c("p", "r"), data=Fat)
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However, in addition to plotting the line, we often will want to extract further information
about the regression model that we built. To build the model, we use the lm command, and to see
the coefficients from the model, we use coef.
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> fm = lm(fat ~ nea, data=Fat)

> coef(fm)

(Intercept) nea

3.50512 -0.00344

3.2 Prediction

There are a few different ways of using our model, now that we’ve built it. A nice way is to run
makeFun() on the model to convert it into a function. Then, we can simply ask the resulting
function to compute estimate based on our model.

> fit.fat = makeFun(fm)

Note that the arguments to this function are named.
In Example 2.14 (page 111), we use the model for fat gain to estimate the fat gain for an

individual whose NEA increases by 400 calories.

> fit.fat(nea = 400)

1

2.13

This is certainly easier than calculating it manually using R as a calculator:

> 3.50512 - 0.00344*400

[1] 2.13

In Example 2.15 (page 112), we use the model for fat gain to esimate the fat gain for an
individual whose NEA increases by 1500 calories.

> fit.fat(nea = 1500)

1

-1.66

This information can also be extracted using the predict function. In this case, we can ask
the model to return values for many different inputs at once.

> nea.new = data.frame(nea = c(400, 1500))

> predict(fm, newdata = nea.new)

1 2

2.13 -1.66

Introduction to the Practice of Statistics using R: Chapter 2
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3.3 Least-squares regression

In Example 2.16, we verify that the coefficients returned by the regression model can be computed
directly from the correlation coefficient, along with the means and standard deviations of the two
variables. The correlation coefficient is:

> cor(fat, nea, data=Fat)

[1] -0.779

The means and standard deviation are given below.

> favstats(~fat, data=Fat)

min Q1 median Q3 max mean sd n missing

0.4 1.53 2.35 3.3 4.2 2.39 1.14 16 0

> favstats(~nea, data=Fat)

min Q1 median Q3 max mean sd n missing

-94 141 374 544 690 325 258 16 0

The slope of the regression line is the product of the correlation coefficient and the ratio of the
standard deviations. We can verify this:

> coef(fm)["nea"]

nea

-0.00344

> slope = with(Fat, cor(fat, nea) * (sd(fat) / sd(nea)))

> slope

[1] -0.00344

With the slope in hand, we can then compute the intercept, since we know that the point (x̄, ȳ)
is on the regression line.

> coef(fm)["(Intercept)"]

(Intercept)

3.51

> intercept = with(Fat, mean(fat) - slope * mean(nea))

> intercept

[1] 3.51

Introduction to the Practice of Statistics using R: Chapter 2
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3.4 Correlation and Regression

The summary command will show a table containing information about a regression model that is
similar to the information shown in Figure 2.14 (page 116).

> summary(fm)

Call:

lm(formula = fat ~ nea, data = Fat)

Residuals:

Min 1Q Median 3Q Max

-1.109 -0.390 -0.104 0.413 1.644

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.505123 0.303616 11.54 1.5e-08 ***

nea -0.003441 0.000741 -4.64 0.00038 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.74 on 14 degrees of freedom

Multiple R-squared: 0.606,Adjusted R-squared: 0.578

F-statistic: 21.5 on 1 and 14 DF, p-value: 0.000381

For the purposes of Chapter 2 of IPS, regression is being used to describe relationships, so the
primary focus is the regression parameter estimates in the first numeric column.

For least squares regression of one variable, the square of the correlation coefficient is equal to
the coefficient of determination (or R-squared aka R2).

> cor(fat, nea, data=Fat)^2

[1] 0.606

> r.squared(fm)

[1] 0.606

3.5 Transforming Relationships

The dataset from Example 2.17 (page 119), Example 2.18 and Figure 2.18 resemble data from
Chapter 9 of the Statistical Sleuth.

Introduction to the Practice of Statistics using R: Chapter 2
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> xyplot(Brain ~ Body, data=case0902)
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We can remove outliers, which yields a plot similar to that in Figure 2.18 (page 120).

> smaller = subset(case0902, Brain < 700 & Body < 1000)

> xyplot(Brain ~ Body, xlab="Body weight (kg)", ylab="Brain weight (gm)",

main="Subset without outliers", data=smaller)
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We can also transform the two variables, as seen in Figure 2.19 (page 121).

> case0902 = transform(case0902, logbrain = log10(Brain))

> case0902 = transform(case0902, logbody = log10(Body))

> xyplot(logbrain ~ logbody, xlab="log body weight", ylab="log brain weight",

main="transformed variables", type=c("p", "r"), data=case0902)
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4 Cautions about Correlation and Regression

The residuals can be extracted easily from a linear regression model, as displayed in Example 2.19
(page 126).

> resid(fm)

1 2 3 4 5 6 7 8 9

0.3714 -0.7013 0.0951 -0.3405 0.1870 0.6145 -0.2620 -0.9834 1.6439

10 11 12 13 14 15 16

-0.1773 -0.2326 0.5361 -0.5400 -1.1091 0.9286 -0.0305

Note that the mean of the residuals is always (by mathematical construction) equal to zero.

> mean(resid(fm))

[1] 0

It’s straightforward to display the univariate distribution of the residuals, to help assess the
normality assumption.

> histogram(~ resid(fm), fit="normal")

Loading required package: MASS
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R has a built-in function for showing residual plots. You can simply plot the model object, and
ask for only the first (of four) diagnostic plots.

> plot(fm, which=1)
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lm(fat ~ nea)

Residuals vs Fitted

9
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Alternatively this can be created in parts, using plotPoints().

> Fat = transform(Fat, pred = fitted(fm))

> Fat = transform(Fat, resid = residuals(fm))

> plotPoints(resid ~ pred, type=c("p", "r", "smooth"), data=Fat)
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For both of these R plots the residuals against the fitted values. However, in Figure 2.20 (page
127), the residuals are plotted against the values of the explanatory variable.

> plotPoints(resid(fm) ~ nea, ylab="Residual",

xlab="Nonexercise activity (calories)", type=c("p", "r", "smooth"), data=Fat)
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A similar plot is shown in Figure 2.21 (page 128).

> fm.oil = lm(field ~ lab, data=Oil)

> plotPoints(resid(fm.oil) ~ lab, xlab="Laboratory Measurement",

ylab="Field measurement", pch=19, type=c("p", "r", "smooth"),

data=Oil)
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4.1 Outliers and influential observations

The analyses displayed in Example 2.21 (page 129) and Figures 2.22 and 2.23 (page 130) can be
generated in a straightforward manner.

> diabetes = read.csv("http://www.math.smith.edu/ips6eR/ch02/ta02_005.csv")

> xyplot(fpg ~ hba, xlab="HbA (%)", ylab="Fasting plasma glucose (mg/dl)",

type=c("p", "r"), data=diabetes)
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> outliermodel = lm(fpg ~ hba, data=diabetes)

> coef(outliermodel)
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> plot(outliermodel, which=1)
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To replicate the display in Figure 2.24 (page 131), we need to fit the model twice more dropping
either subject 15 or subject 18, and generating predicted lines for each of these models.

> no18 = lm(fpg ~ hba, data=subset(diabetes, obs != 18))

> no15 = lm(fpg ~ hba, data=subset(diabetes, obs != 15))

> plotPoints(fpg ~ hba, type=c("p", "r"), data=diabetes)

> ladd(panel.abline(no18, col="red", lty=2))

> ladd(panel.abline(no15, col="green", lty=2))
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4.2 Beware the lurking variable

In Example 2.24 (page 133), the association between private health care spending and goods im-
ported to the United States is examined each year between 1990 and 2001.

> Imports = read.csv("http://www.math.smith.edu/ips6eR/ch02/eg02_024.csv")

> head(Imports)

imports health

1 498 696

2 491 762

3 537 827

4 590 888

5 669 937

6 749 990

Figure 2.25 (page 133) illustrates the relationship.

> plotPoints(health ~ imports, data=Imports, pch=19)
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