113316		ne Search Register Login
News	News: July 2000	
Physics World	Back to Archive	Article S 2 S of
Buyer's Guide		
Reviews	Schrödinger's cat comes into view	
Web links		
Calendar	[5 Jul 2000] In 1935 Erwin Schrodinger proposed a famous thought experiment in which a cat was somehow both alive and dead at the same	
PhysicsJobs	time. Schrodinger was attempting	to demonstrate the limitations of quantum
TIPTOP	mechanics: quantum particles su	ch as atoms can be in two or more differer
Alert Mel	made of a large number of atoms	such as a cat, could not be in two differen
Mambas Candard	states. Now Jonathan Friedman a	nd co-workers at the State University of
wember Services	Schrodinger cat state for the first	nave demonstrated a macroscopic time (<i>Nature</i> 406 43). In their experiment a
elated links:	superconducting device is placed	in a quantum superposition of two states
ondensed	one that corresponds to a current direction and another that correspondence	tlowing through the device in a clockwise nonds to an anti-clockwise current
ook		
	In his original thought experiment, S	chrodinger imagined that a cat is locked in a
acroscopic iantum	box, along with a radioactive atom the poison. If the atom decays, it causes	hat is connected to a vial containing a deadly sthe vial to smash and the cat to be killed
herence in	When the box is closed we do not k	now if the atom has decayed or not, which
ome	means that it can be in both the dec	ayed state and the non-decayed state at the
estricted	same time. Therefore, the cat is both clearly does not happen in classical	n dead and alive at the same time - which physics.
nks:		
<u>ature 406 25</u>	The SUNY-Stony Brook experiment	uses superconducting quantum interference
	made of billions of pairs of electrons	can circulate in either a clockwise or an
	anti-clockwise direction without deca	aying. Their device is made from niobium,
	which is superconducting at the tem	peratures of 40 millikelvin used in the
	experiment, and aluminium oxide, w	hich acts as a barrier. A palladium-gold shield
	protects the device from interactions	with the environment that would otherwise
	wipe out the quantum superposition	s being studied.
	The system can be represented as a	a potential well with two minima, both of which
	contain several bound states, separ	ated by a barrier. Friedman and co-workers
	Next they illuminate the SQUID with	microwaves which excite the system to a
	clockwise state with higher energy.	The system can now tunnel from the clockwis
	state into the anti-clockwise state, a	nd back.
	The question is essentially whether	the system remembers or foraets its auantum
	state as it tunnels. To answer this th	e Stony Brook team measures the probability
	of finding the current flowing in the a	nti-clockwise direction as the shape of the
	double-well potential is changed. Th	e results are exactly as predicted by assumin
	the two states corresponds to a curr	ent of 2 to 3 microamps or a magnetic moment
	of 10 billion Bohr magnetons, which	is "truly macroscopic" according to Friedman
	and co-workers.	-
OP Publishina Ltd		
)01.	Back to 🔇 Archive	Article 🔇 2 🗅 of

1 of 1

Contact us

3/28/2001 5:46 PM