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Lecture |I: Toric Varieties and Their Constructions

1 Varieties

We will work over the complex numbefS Basic examples of varieties are:
e Affine spaceC" andaffine varieties

V=V(f,...,fs) cC"

defined by the polynomial equatiofis= --- = fs=0.
e Projective spac®" andprojective varieties

V=V(F,...,Fs) cP"
defined by the homogeneous equatibps- --- = Fs = 0.

Example 1.1 Let C* = C\ {0}. Then(C*)" C C" is an affine variety since the maf,...,tn) —
(ty,..-,th, 1/t;---ty) gives a bijection

(C)"= V(XXX g — 1) C CME

We callC* then-dimensional complex torus

Also recall that given varietieg andW, we can form theproduct variety Vx W. Then a
morphismy :V — W is a function whose graph is a subvarietyvok W.

2 Characters and 1-Parameter Subgroups

The torusT = (C*)" has:
e Thecharacter group

M= {x:T — C"| x isamorphism and a group homomorphjsm

e The group of Iparameter subgroups

N={A:C" =T |A isamorphism and a group homomorphjsm

Note that:
e M~ Z"wherem= (m,,...,m,) € Z" gives

XM(ty, ... t) :tf‘l---tr']h.

e N~ Z"whereu= (ug,...,un) € Z" gives

AU() = (Y, t).
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Giveny € M andA e N, the compositiory oA : C* — C* is of the formt — tX for somek € Z.
If we setk = (x,A), then
XoA(t)= XA,
One can easily check that:
e The mapM x N — Z given by(x,A) — (X, A) is a perfect pairing.
e Givenm= (m,,...,my) andu= (u,,...,un), then

(XM, AY) = mu;+ -+ My

Furthermore:

e We will usually identifyM with Z" and writem € M. However, when we think ofm as a
function onT = (C*)", we continue to writey™.

e Similarly, we identityN with Z" and writeu € N, though we writeA" when thinking ofu as a
1-parameter subgroup.

e Finally, we will usually write(m, u) instead of(x™ AY).

3 Toric Varieties

The torusT = (C*)" can be regarded as a Zariski open subset of a larger vatigtynany ways:
e (C*)" C C" under the natural inclusion.
e (C*)"C P"under the magt,,...,tn) — (t;,...,tn,1).

e V =V(xy—2zw) C C* contains the Zariski open sétn (C*)*. The map(r,s,t) — (r,s,t,rs/t)
induces a bijectioiC*)2 ~V N (C*)*. ThusV contains a copy ofC*)® as a Zariski open set.

Definition 3.1 A toric variety is a normal variety X of dimension n which contains a torusT
(C*)" as a Zariski open set in such a way that the natural action ofitself given by the group
structure extends to an action of T on X.

All of the above examples are toric varieties. The main gddlezture | is to explain three
constructions of toric varieties. The common thread ofélesstructions is the rich combinatorial
structure which underlies a toric variety. Here is an exampl

Example 3.2 Let’s show that{C*)? c P? gives the following picture ifR® = N ®, R

(1.1)




A 1-parameter subgroupe N gives a map\ U : C* — P2. P? is complete, so that

H u
)

exists inP2. If u= (a,b) € Z2 = N, then the description of" given on page 1 implies that
AUt) = (1310, 1).

It is then straightforward to compute that

(0,0,1) ab>0
(0,1,1) a>0,b=0
(1,0,1) a=0,b>0
(1.2) limAY(t) =lim(t3,t°,1)={ (1,1,1) a=b=0
t—0 t—0
(0,1,0) a>b,b<0
(1,0,0) a<O0,a<b
(1,1,0) a<O,a=h.

The first four cases are trivial. To see how the fifth case warkte that
lim (t3,t°, 1) = lim (t*°,1,t ?)
t—0 t—0

since these are homogeneous coordinates. &heh andb < 0 imply that the limit is(0,1,0), as

claimed. The last two cases are similar.
Now observe that (1.1) decomposes the plan into 7 disjogibnes:

e Theopensets B b>0,2:a=0,b>0,3:a>b,b<0.
e Theopenraysla>0b=0,2:a=0,b>0,3:a<0,a=h.
e The pointa=b=0.

The corresponds perfectly with (1.2). In the next sectioa,will see that (1.1) is thé&an corre-
sponding to the toric variet§?.

4 First Construction: Cones and Fans

Let X be a toric variety withT = (C*)", M andN as above. We first explain how the character
groupM leads to pictures generalizing (1.1). The idea is tha M givesx™: T — C*. Since
T C X, we can regargt™ as a rational function oK.

The divisor of this rational function has some nice progsitit is supported on the complement
of T in X. This complement will be a union of irreducible divisors,ialhwe denote

X\T=D,U---UDy.

Then the divisor ofy™ can be written

r

dv(X") = Y &,
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whereg, is the order of vanishing (or the negative of the order of tbie)pof x™ alongD;. This is
one of the reasons we require tixabe normal—it ensures that tlheare well-defined.

The key observation is that the map- g, is a homormorphism Exercise: Prove this.) Using
the duality betweeM andN, we getn;, € N such that, = (m,n;). This implies

r

(1.3) div(x™) = .Z\(m, n,)D;.

It follows that the toric structure of uniquely determines a unique set of elements..,n, € N.
Then, are part of théan determined byX.

However, before we can define fans, we must considees We will let M, = M ®, R and
Nz = N®, R denote the real vector spaces obtained fMrandN.

A rational polyhedral coner C N, is a cone generated by finitely many elementslof

O':{Alul—f—-..—f—ASUsE NR|A17"'7ASZO}7

whereu,,...,Uus € N. Then:
e 0O isstrongly convexf cn (—o) = {0}.
e Thedimensiorof o is the dimension of the smallest subspace contaiging

e A faceof o is the intersectioq/ = 0} N g, where/ is a linear form which is nonnegative on
0. The set of faces af of dimensiorr is denoteds(r).

e Theedgeof o are the 1-dimensional facgsc g(1). Theprimitive element pof p € o(1) is
the unique generator @N N. The primitive elements,, p € a(1), generate the.

e The facetsof o are the codimension-1 faces. When dims= n, each facet has an inward
pointing normal which is naturally an element if,. We get a unique inward normal by
requiring that it is inM and has minimal length.

If 0 C Ng be a strongly convex rational polyhedral cone, thewlital conec” C My, is
0'={meMg|(mu)>O0forallue o}.
This is a rational polyhedral cone of dimensimnThen consider the semigroup algebra
Clo NM]
consisting of linear combinations of charactgf with multiplication given byy™- x™ = ™

Gordan’s Lemmamplies thatC[ag" N M] is a finitely generated algebra ov@r

Example 4.1 First consider am-dimensional coner generated by a bases,...,e, of N. The
basis gives an isomorphishh ~ Z" which takeso to the “first quadrant” where all coordinates
are nonnegative. In terms of the dual basi®f M, g" has the same description. It follows that
CloY NM] can be identified with the usual polynomial rifif, ,...,tn] by settingt; = XS

Example 4.2 Next suppose thatr = {0} is the trivial cone. Them" = Mg, so thatg” NM =
M. Picking bases foN andM as in the previous example, the semigroup alg@ljM] can be
identified with the ring of Laurent polynomia@®t:-?,. .. t31].



Example 4.3 Consider the cone C R® pictured below:

c

The inward pointing normals of the facetsmfare
(1.4) m, = (1,0,0), m, = (0,1,0), my = (0,0,1), m, = (1,1, -1).

These generate the dual comé and in this case also generate the semigr@tip M. Under the
ring homomorphisnC|x,y,z,w] — C[g" NM] defined by

X X, Y X2, 2 XT3, Wi X
one sees thaty— zw— 0 sincem, +m, = m; +m,. It follows easily that

Cx,Y,z,W]/(xy—zw) ~ C[a¥ NM].

In general, one can writ€[c¥ NM] >~ C[x,,...,Xy]/(f;,..., fs), generalizing Example 4.3.
Then the affine variety
Xg=V(fy,...,fs) c CN

is theaffine toric varietydetermined by the strictly convex rational polyhedral coneThe con-
struction ofX; is a special case of the “Spec” of a ring, as described in Hante. Thus

Xg = SpedC[a’ NM)).

Also, C[a¥ NM] is thecoordinate ringof X, which consists of all polynomial functions 0.

Note that the inclusio@[o¥ N M] C C[M] corresponds to an inclusiohC X,. ThusC[g" NM]

tells us which characters on the toflisre allowed to extend to functions defined on alKgf
You should check that the above examples give the followffigeatoric varieties:

e Example 4.1 give€" = Spe¢Clt,,...,t)).
e Example 4.2 give$C*)" = SpecC[t{?, ... t31)).
e Example 4.3 give¥ =V (xy—zw) = SpecC[x,y,z,w|/(Xy—zw)).
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We next create more general toric varieties by gluing togyediffine toric varieties containing
the same toru$. This brings us to the concept ofan, which is defined to be a finite collectian
of cones inN, with the following three properties:

e Eacho € X is a strongly convex rational polyhedral cone.
e If 0 € Zandr is a face ofo, thent € 2.

e If 0,71 €2, thenontis aface of each.

Eacho € Z gives an affine toric varietXy, and if T is a face ofo, thenX; can be regarded as a
Zariski open subset of,. This leads to the following definiton.

Definition 4.4 Given a fanz in N, X; is the variety obtained from the affine varieties, X € Z,
by gluing together ¥ and X along their common open subsej for all o, 1 € %.

The inclusionsT C X, are compatible with the identifications made in creabiygso thatXs
contains the toru¥ as a Zariski open set. Furthermore, one can show¢hat a toric variety and
thatall toric varieties arise in this way, i.e., every toric variggydetermined by a fan. Here are
some examples.

Example 4.5 Giveno C Ny, we get a fan by taking all faces of (including o). The toric variety
of this fan is the affine toric variet;. For the special case whenis generated by the firgt
vectors of a basis,, ..., e, of N, you should check that

Xg = CK x (C)"K,

Example 4.6 The fan forP! is as follows:

The conesr; = [0,0) and g, = (—o,0] give X; = Spe¢C[t]) ~ C and X, = Spe¢CJt 1]) ~ C,
which patch in the usual way to gii.

Example 4.7 The fan forP! x P! is as follows:




In this figure, 1-dimensional cones are indicated with thilcks, and 2-dimensional cones (which
extend to infinity) are shaded. Thus the fanfdrx P! has four 2-dimensional cones, ..., 0.
The affine toric varietieX,, ~ C? glue together in the usual way to gi#é x P*.

Example 4.8 Lete,,...,e, be a basis oN = Z", and se, = —e, —--- — &,. Then we get a fan
by taking the cones generated by all proper subsef{gpe,,...,en}. You should check that the
associated toric variety 8". Whenn = 2, this gives the fan (1.1).

There aremanyother nice examples of toric varieties, including prodwdtprojective spaces,
weighted projective spaces, and Hirzebruch surfaces. Wees in the Lecture Il that every lattice
polytope inM, determines a projective toric variety.

Toric varieties are sometimes callentus embeddingsind Fulton and Oda call the fén Also,
the toric variety determined by is variously denoteXs, X(Z), Z(Z), andTyemi(Z). Further-
more, polytopes (which we will encounter in Lecture Il) aendtedP, O, and (just to confuse
matters more\. The lack of uniform notation is unfortunate, so that thedexeof a paper using
toric methods needs to look carefully at the notation.

5 Properties of Toric Varieties

The fanZ has a close relation to the structure of toric vari&ly The basic idea is that there are
one-to-one correspondences between the following setsjetts:

e The limits lim_4A"(t) foruc |Z| = Uy 0 (|Z] is thesupportof ).
e The conesr € 3.
e The orbitsO of the torus actiofm on Xs.

The correspondences is as follows: an ofbitorresponds to a coreif and only if lim, _ jAY(t)

exists and lies ir© for all u in the relative interior obr. SettingO = orb(o), we have
e dimo+dimorb(o) = n.

e orb(o) C orb(t) ifand onlyift C o.

In particular, the fixed points of the torus action corresptmthen-dimensional cones in the fan.
(Exercise: Verify all of this for P2 and the fan drawn in Example 3.2.)
We next discuss some basic properties of toric varietigst,lSome terminology:

e A cone issmoothf it is generated by a subset of a basid\bf
e A cone issimplicialif it is generated by a subset of a basid\bf.
Then we have the following result.
Theorem 5.1 Let X be the toric variety determined by a fann Ng. Then:
(@) X5 is complete<=> the supportZ| = J, s 0 is all of N;.
(b) X5 is smooth<= everyo < % is smooth.
(c) X5 is an orbifold <= everyZ is simplicial. (Such toric varieties are callesimplicial.)
(d) Xs is Cohen-Macaulay with dualizing sher.a;‘<Z = ﬁxz(— >oDp).
(e) Xs has at worst rational singularities.
Lecture Il will give criteria forXs to be projective.
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6 Second Construction: Homogeneous Coordinates

Our second construction uses homogeneous coordinatesrforvarieties. Homogeneous co-
ordinates onP" give not only the graded rin@[x,,...,X,] but also the quotient construction
P" ~ (C"1\ {0})/C*. Given an arbitrary toric variet)Xs, we generalize this as follows. For
eachp € (1), introduce a variabl®,, which gives the polynomial ring

S=Clx, | p € 2(1)].

To gradeS, we first note that for each € (1), the corresponding orbit has codimension 1, which
means that its closure is an irreducible divigy C Xs. It follows that a monomial'lpxzp gives

an effective divisoD = 5 ,a,D,,. For this reason, we write the monomialx@s Now define the
groupA,, ;(Xs) by the exact sequence

(1.5) M % @,ZD, B A, (%) — 0,

wherea(m) = ¥ ,(mn,)D, and B is the quotient map. Then the degree of a mononfais
defined to be deg®) = (D). This graded ring is thkomogeneous coordinate rirmg Xs.

One can prove tha, ,(Xs) is theChow groupof Weil divisors modulo algebraic equivalence.
To see how this relates to (1.5), note that (1.6) implies that

(1.6) div(x™) = 3 (m n)Dp.
)

is linearly equivalent to zero. This explains the nam (1.5). We should also mention that when
Xs is smooth A, ;(Xs) is thePicard groupPic(Xs).
Example 6.1 ForP", this construction giveS = C[x,, ..., Xa] with the usual grading,
Example 6.2 For P! x P!, Example 4.7 shows that we have divisbrg D, corresponding to the
horizontal rays and divisof35, D, corresponding to vertical ones. If the corresponding \es
arexy, Xy, X3, %4, then we get the ring = C[x;, X,, X3, X,]. One can show that the Chow groufis
and that

degXJ1x2xesxat) = (8 +ay, 83+ ),

which is precisely the usual bigrading @ix,,x,;X3,%,], where each graded piece consists of
bihomogeneous polynomials i3, X, andxs, X,.

Example 6.2 generalies B x P™, whereS= C[x,,...,Xn; Yy, - - - , Ym]| With the usual bigrading.
We next use the variableg to give coordinates oXs. To do this, we need an analog of the
“irrelevant” ideal (X, . .., Xn) C C[X,,...,%n]. For each cone € Z, letx? be the monomial

X7 = MNoezapo(1)%e
and then define the ideBlcC Sto be
B=(x’|oc%).

ForP", the reader should check tHat= (X, ..., %n).
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The basic idea is tha¢ should be a quotient @V \ V(B), whereV (B) ¢ CZ( is the variety
of B. The quotient is by the grou@, where

G =Hom,(A,_1(X;),C").
Note that applying Hom(—, C*) to (1.5) gives the exact sequence

(1.7) 1— G — (C)*Y — T

This shows thaG acts naturally of©>(1) and leave®/ (B) invariant.
The following representation o€ was discovered by several people in the early 1990s.

Theorem 6.3 Assume that Xis a toric variety such thak(1) spans ). Then:
(a) X is the universal categorical quotie(€=M \ V(B)) /G.
(b) X; is a geometric quotierC=Y \ V(B)) /G if and only if X is simplicial.

In the situation of the theorem, (1.7) is a short exact secgieso thall = (C*)* /G. Thus
T=(C)*Y/Gc (XY \V(B))/G.

Furthermore, since the “big” tory€*)*Y acts naturally o€>1) \ V(B), it follows thatT acts on
Xs. Quotients preserve normality, so that all of the requinetsief being a toric variety are satisfied

by the quotient in Theorem 6.3. In fact, one ctefine % to be the quotienfC*V) \ V(B)) /G.
Here are some examples of Theorem 6.3.

Example 6.4 ForP", the theorem gives the usual quotient represent&®ion (C1\ {0})/C*.
Example 6.5 Continuing our example dP* x P!, we haveB = (X;Xg,X;X;, XoX3,%,X,). Then,
thinking of C(Y) asC? x €2, one has

V(B) = ({0} x C*) U(C? x {0}).

One can also check thé@t~ (C*)? acts onC? x C? via

(A ) N) : (X17X27X37X4) = (A X]_v)\X27 IJX37 IJX4)-

Hence the quotient of Theorem 6.3 becomes
(€% C\ ({0} x )L (€ x {0})) ) /(C")?

which is exactly the way one usually represePts< P! as a quotient.

Example 6.6 We will construct global coordinates for the blow-up oE@". Lete,,...,e, be a
basis ofN = Z", and leto = R} be the cone they generate. The resulting affine toric vaisety.
Then seg, = e, +--- + &, and consider the fak whose cones are generated by all proper subsets
of {ey,...,en}, excluding{e,,...,en}. We will prove thatXs is the blow-up of 0= C" using the
representation oks given by Theorem 6.3.



If x, corresponds to the edge generated bthen the reader should show that the homogeneous
coordinate ring oKs is C[x,, ..., X)) where deg@x,) = —1 and de@x) = +1 for 1 <i < n. Further-
more,V(B) = Cx {0} € Cx C" andG = C* acts onCZ) = C x C" by U - (X5,X) = (L~ 1%g, UX).
Then, given(x,,x) € Cx C"\ V(B), we can act on this point usir@ to obtain

(X07X) NG (17X0X) If XO 7& O
(0,x) ~g (O,ux) if u#0.

In the first line, note that # 0, so that this part of the quotient@' \ {0}. In the second line, we
clearly getP"~1. Note also that the mals — C" given by (X, Xy, - -, Xn) > (XX, - - » Xg¥Xn) IS
well-defined sincex; has degree 0 and hence is invariant under the group actitilolvs that
Xs is the blow-up of 0= C".

If o is ann-dimensional cone iMN,, then the representation &f; given by Theorem 6.3 is
especially simple in two cases:
e For o smooth, the theorem givé®' ~ X,.
e For o simplicial, the theorem give8" /G ~ X, whereG is the finite groupN/($,Zn,).
However, in the nonsimplicial case, things can be more cmaigld.

Example 6.7 For the cones of Example 4.3, Theorem 6.3 giv€8 /G ~ X, = V (xy— zw), where
G = C* acts onC* via

The quotient is writterC* /G because it is not a quotient in the usual group theoreticesefs
see why, consider the m&f — X, given by

(X1, X, X3, Xg) = (X1 Xg, XXy X1 X4, XX3) -

If p € X, then one can show that
e p#0= m1(p)isaG-orbit.
e p=0= mi(p)=(C?x{0})u ({0} x C?).

7 Third Construction: Toric Ideals

Our third construction involves toric ideals. Let’s begiitiwa special case. L&t C Ny be a cone,
and suppose tha¥ = {m,,...,ms} generates the semigroep’ "M. The map sending — x™
gives a surjective homomorphis@ly, ,...,ys] = Cla” NM]. The kernel , is atoric ideal.

A key observation is that , is generated byinomials(a binomial is a difference to two
monomials). To state this precisely, note that (a,,...,as) € Z° can be uniquely writtemr =
at —a~, wherea™ anda~ have nonnegative entries and disjoint support. Then the iteal

|, CClyy,...,Yqis

(1.8) Ig/:<y"’+—y"_ o =(a,...,a) € Z% ¥y ,am = 0).
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In practice, toric ideals are defined in much greater geitgrahd are closely related to non-
normal toric varieties. To set this up, lef = {m,,...,ms} beanyfinite subset oZ". Then define
thetoric ideal | , using the right-hand side of (1.8). Toric ideals are easyhtracterize: an ideal
in Cly,,...,ys| is atoricideal , if and only if it is prime and is generated by binomials.

Thinking geometricallyl , defines a subvariety , C C°. One can show that , is the Zariski
closure of the image of the mdg* )" — C° defined by

(1.9) t—= (xM™(t),...,x™()).

Note also thaX , contains a torus (the image (€*)" under the map (1.9)). Hencg, satlsfles
all of the criteria for being a toric variety, except posgibbrmality. For this reason, we call,
generalized affine toric varietyHere are two facts abodt ,:
e X, is atoric variety in the usual sense (i.e., is normal) if anty o N.ov = Cond.«/) N Z <,
where Conés/) is the cone generated by, andZ.«/ (resp.N«7) is the set of all integer
(resp. nonnegative integer) combinations of elemenig of

e The normalization ofX , is the affine toric varietyX,, whereo C Ny, is the cone dual to
Cond.«) andN is the dual ofZ.«7 .
Example 7.1 The toric variety of Example 4.3 % _,, wheres/ = {m;,m,,m;,m,} as in (1.4).
Example 7.2 Given« = {f,,...,Bs} C Z, we get anonomial curven C° parametrized by

tes (tP, .. ths).

Sincet? is a character oi€*, this is the generalized affine toric varie¥y,. It is nonnormal
premsely wherX , fails to be smooth. The simplest example is the cusp para'smadtbyt >
(t2,t3). Here, the corresponding toric ideal is generated by therbial y* —

Besides the generalized affine toric varity C C°, we also get a projective variety, C Ps-1
by regarding (1.9) as a map— PS~1. More precisely, thgeneralized projective toric variety Y
is defined to be the Zariski closure of the image of this mame&aized projective toric varieties
arise naturally in many different contexts.

Example 7.3 Suppose that” = {m,,...,ms} C Z" and thate7 generate€". Then letlL(«/) be
the set of Laurent polynomials with exponent vectors4ni.e.,

L) = (o™t +ad™ |3, € C),

wheretm:till -t form=(a,,...,an) € Z". Givenn+ 1 Laurent polynomialg,, ..., foe L(«),
their <7 -resultant

Res, (fy,..., fn)
is a polynomial in the coefficients of the whose vanlshing is necessary and sufficient for the
equationsf, = --- = f, = 0 to have a solution. However, one must be careful where theico

lies. Thef; are defined initially on the toru€*)", but the definition of generalized projective toric
variety shows that the equatidp= 0 makes sense or),. Then one can prove that

Res,(fy,...,fn) =0 <= f; =---= f, =0 have a solution iY ,.

Generalized toric varieties and toric ideals also haveiegipbns to hypergeometric equations
and combinatorics.

11



Lecture Il: Toric Varieties and Polytopes

1 The Toric Variety of a Polytope

Let M ~ Z" andN ~ Z" be as in Lecture |. Aattice polytopeA in M, = M ®, R is the convex
hull of a finite subset oM. We will show that am-dimensional lattice polytopA determines a
projective toric varietyx,.

To do this, we first describ®. For each facdt of A, there is an inward normal primitive vector
ne € N and integea: such that

(2.1) A={meMg|(mn) > —a for all facetsF }.
Given any faceZ of A, let o, be the cone generated hy for all facetsF containing. Then
Zy=1{0, | Z isaface ofd}

is a complete fan which is called tm@rmal fanof A. This gives a toric variety denote).

Example 1.1 The unit squarél with vertices(0,0), (1,0), (1,1), (0,1) can be represented
OD={a>0}n{-a>-1}n{b>0}n{-b> —1}.

It follows that the inward normals aree;, and+e,. This gives the following normal fan:
e 1€, and+e, generate the 1-dimensional cones of the normal fan.

e The vertex0, 1) lies in the faces defined lay= 0 and—b = —1 corresponding to inner normals
e, and—e,. Hence this face corresponds to the cone generateg &yd —e,.

The other vertices are handled similarly, and the resultiognal fan is the one appearing in
Example 4.7. Henc¥g = P! x PL.

In general, we can characterize these fans as follows.

Theorem 1.2 The toric variety of a fark in N ~ R" is projective if and only it is the normal
fan of an n-dimensional lattice polytope in,M

We should also note that the polytofsés combinatorially dual to it normal fah,. This means
that there is a one-to-one inclusion reversing correspacele

Oz €Zp+— FCA
between cones &, and faces ol (provided we cound as a face of itself) such that
dimg, +dim.# =n

for all faces# of A. Combining this with the correspondence between con&g ahd torus orbits
from Lecture | gives a one-to-one dimension preservingespondence between facesfoand
torus orbits ofX,. ThusA determines the combinatorics of the toric varixfy

12



In particular, a faceF of A corresponds to the edgg Z, generated by.. This in turn
corresonds to a divis@, on X,. Then the representation (2.1) gives the divisor

Then one can show that
(2.2) HO(X,, Ox (D))= P C-x™
meANM

If we write ANM = {m,,...,ms}, then the sectiong™ give the map (1.9) defined by

t— (x™(t),...,x™()),

which extends to a majg, — PS-1. In fact, for v > 0, the corresponding map forA is an
embedding (this is how one proves Theorem 1.2), so that iatioot of Lecture 1,X , is the
projective varietyy ,, where</ = VANM be the set of lattice points mA. Also, X, = X, since
A andvA have the same normal fan.

There is also a dual version of this construction. SuppoaeRIC N is ann-dimensional
polytope which contains the origin as an interior point arithse vertices lie ifQ". Then we get

a complete fark in Ny by taking cones (relative to the origin) over the face®oT he resulting
toric variety is denoted.

Example 1.3 Consider the tilted squakin the plane:

o
/

The fanZ,, obtained by taking cones over faces is the fan of ExampleHeficeX, = P! x PL.
To see how this relates to our earlier construction, we déffiepolar or dualof P C N, to be

P°={me Mg | (mu) > —1foralluc P}.

SinceP has rational vertices, so doBs, which means thah = /P° is a lattice polytope for some
positive intege®. Then one can show that, is the normal fan of\, so thatX; is the projective
toric varietyX,.

A quite different method for constructing, is due to Batyrev. Giver, consider the cone
overA x {1} € My @ R. The integer points of the cone give a semigroup algéhra Since
(m,k) e M@Zisinthe cone ifand only ifn€ kA, S, is the subring of[ty, t:%, .. . t;!] spanned by
Laurent monomialt{ftm with k > 0 andm € KA. This ring can be graded by setting (ﬂ%{l}m) =Kk,
and one can show that

X, = Proj(S,).

SinceS, is the coordinate ring of an affine toric variety, it is CoRdacaulay and henck, is
arithmetically Cohen-Macaulay.

13



2 The Dehn-Sommerville Equations

Euler’s formula for a 3-dimensional polytopein R3 is

wheref; is the number of-dimensional faces ak. If A has the additional property that all of its
facets are triangles (such as a tetrahedron, octahedronsatiedron), then counting edges gives

(2.4) 3f, = 2f,.

To generalize these, suppose tRat ann-dimensional polytope ifR" such that every facet
is simplicial, meaning that every facet has exaatlyertices. For such a polytope, Itbe the
number ofi-dimensional faces d?, and letf ;, = 1. Then, for 0< p <n, set

The Dehn-Sommervillequations assert that ¥ C R" is ann-dimensional simplicial polytope,
then

(2.5) hP=h""P forall0O< p<n.

Whenn = 3, (2.3) ish® = h® and (2.4) is equivalent to! = h? (assumind® = hd).

To prove (2.5), note that we can moReso that the origin is an interior point. Furthermore,
wiggling the vertices by a small amount does note changedhematorial type oP. Thus we
may assume that its vertices lie@. Then, as in the previous section, projecting from origin to
the faces oP gives a fan inN, = R" which is simplicial since® is. This gives a projective toric
variety Xp.

Being projective and simplicial implies two nice facts abXy:

e hP =dimH?P(X,,Q) for0< p<n.
e Poincaré Duality holds foXp, i.e., dimH9(X5, Q) = dimH?"9(X,, Q) for 0 < g < 2n.
The Dehn-Sommerville equations (2.5) follow immediately!

In the smooth case, the second bullet is Poincaré Dualdtytite first bullet, note thaX;, is a

union of affine toric varietieX, ~ C". Then the formula for dinh-lzD(XP,Q) follows straightfor-

wardly since
Xg o~ CK x (€)=K

when g is a smooth cone of dimensida The simplicial case is similar since an orbifold is a
rational homology manifold.

This is very pretty but is not the end of the story. One can atdoif it is possible to charac-
terizeall possible vectorsf,, f,,..., f, ;) coming fromn-dimensional simplicial polytopes. For
example, whem = 3, one can show that a vector of positive integefs f;, f,) comes from a
3-dimensional simplicial polytope if and only ff, > 4 and (2.3) and (2.4) are satisfied. This can
be generalized to arbitrary dimensions, though the reakd#tst some work to state. A nice account
can be found in Section 5.6 of Fulton’s book. What's intarggts that the proof uses the Hard

Lefschetz Theorem for simplicial toric varieties (whichaisery difficult theorem).
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3 The Ehrhart Polynomial

This section will use toric varieties to prove the followiwgnderful result of Ehrhart concerning
lattice points in integer multiples of lattice polytopes.

Theorem 3.1 LetA be an n-dimensional lattice polytope inM= R". Then there is a unique poly-
nomial E, (theEhrhart polynomial ) with coefficients ifQ which has the following properties:

(a) For all integersv > 0,
Ep(v) =#(VANM)

(b) If the volume is normalized so that the unit n-cube deterchinea basis of M has volume 1,
then the leading coefficient of\&s vol(A).

(c) If int(A) is the interior ofA, then thereciprocity law states that for all integers > 0,

Ex(—V) = (—1)"#(vint(A) N M).

Before giving the proof, let’s give a classic applicatiomimension 2. 1A is a lattice polygon,
then the Ehrhart polynomial is

(2.6) E,(X) = aredl)x* + Bx+1
sinceE,(0) =#(0-ANM) = 1. If we letdA denote the boundary @, then
EA(D) =#ANM) =#(int(A) N"M) +#(0ANM) = E(—1) +#(0ANM),
where the last equality uses the reciprocity law. By (2.@®,als0 have
E\(1) =aredA)+B+1 and E,(—1) =aredA)-B+1.

Combining these equalities gives the following:
e B= %#(aAm M), so that the Ehrhart polynomial of a lattice polygon is

Ep(x) = aredd) X% + S#(OANM) x+ 1.
e In particular, settingg = 1 givesPick’s Formula

#ANM) = aredd) + $#(OANM) + 1.

We now turn to the proof of Theorem 3.1. While this result caploved by elementary means,
we will give a proof which uses the cohomology of line bundieghe toric variety<,. Recall that
in Section 1 we representédas the intersection (2.1). We also had the line bundle

L= 0y (D), Dp= ZaFDF'
By (2.2), the global sections &fare

(2.7) HoX,,L) = @ C-x™
meANM
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To prove Theorem 3.1, we first consider theler-Poincagé characteristic

n

X (X L) = _;(—1)‘ dimH'(X,,L).

By a result of Kleiman, there is a polynomiagl of degree at most such that
(2.8) X (X, L®Y) =hi (v)

for all integersv.
However, the line bundl& is ample—this is part of the proof thX, is projective. This has
nice consequences for the Euler-Poincaré character#stit, on any complete variety, we have:

e Any positive tensor power of an ample line bundle is ample.
Furthermore, line bundles on complete toric varieties hhaedollowing special properties:
e An ample line bundle on a complete toric variety is generéteis global sections.

e Let Z be aline bundle on a complete toric variety If £’ is generated by its global sections,
thenH'(X,.Z) =0 for alli > 0.

These three bullets and the amplenesis ofiply that
H'(X,,L®Y) =0
wheni > 0 andv > 0.1 Using this, the Euler-Poincaré characteristic simplifees
X(Xn,LZY) = dimHO(X,, L=
whenv > 0, and combining this with (2.8), we conclude that the potyiad h, satisfies
(2.9) dimHO(X,,L®Y) = h_(v)

forall v > 0.
The next observation is that the polytogkeandvA give the same normal fan and hence the
same toric varieties, i.eX, = X . Furthermore, the divisor associated/ity is

which means that the associated ample line bundl&’Ys It follows that if we apply (2.7) with
L®Y in place ofL, then we obtain

HO L®V @ C- X

mevANM

Combining this with (2.9), we conclude that
#(vANM) = dimHO(X,,L®") = h_(v)

forall v > 0. This shows thaE, = h,_satisfies the first assertion of the theorem.

lWhenv = 0, note that® = ﬁ’XA is generated by global sections.
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The second follows easily from the first, forl, (x) = ax"+ - - - 4 a,, then
#(VANM)

an = lim Eav) _ lim ——_—> =vol(A).

v—oeo YN Vo0 %

The proof of the third assertion is more sophisticated. Ré&wan Theorem 5.1 of Lecture |
that the dualizing sheaf of, is
wy, = Ox, (= Z Dr),

where as usudD, is the divisor corresponding to the fadef A. SinceX, is Cohen-Macaulay,
Serre Dualityimplies that

H (X, L#CY) = HY (O, LY @ @y )™
In terms of the Euler-Poincaré characteristic, this gasiplies
XX LV) = (—1)" X (% LV @ iy ).
If we combine this with (2.8), we see that the Ehrhart polyradia, = h, satisfies
Ex(-V) = (-1)"X (X% L @ @y )
for all v. Butif v > 0, thenL®V is ample, so that thikodaira Vanishing Theorenmplies that
Hi(XA,L®"®wa) =0
whenv > 0. Hence, for these, the above formula simplifies to
Ex(—Vv) = (—=1)"dimH(X,,L*" @ Wy ).
The final step in the proof is to show that
dimH%(X,,L*" ® wy ) = #(vint(8) NM)
for v > 0. By our trick of replacing\ with vA, it suffices to prove this fov = 1. Note that
Lo wy =0y (Dy—3eDg) = Ox (Sr (a8 —1)Dg),

whereA = Nz {me Mg | (m,ng) > —ac}. Since
int(8) M = (me M| (mng) > —ac} =|{meM | (mng) > —(a — 1)},
F F

the methods used to prove (2.7) imply that

HO(Xy, O (Sr(@e —1)Dg)) = @ C-x™
meint(A)NM

This completes the proof of the theorem!
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We conclude this section with another application of thehahr polynomial. Given a finite
set«/ = {m,...,ms} C Z", we get the (possibly nonnormal) projective toric vari¥ty C P>~ 1
defined in Section 7 of Lecture I. We now give a criterionYgr to be normal which involves the
Ehrhart polynomial of the polytopt = ConV(.«7).

To state the criterion, we define thiglbert polynomialof Y , to be the unique polynomi#l ,
for which

Hy(v)=#{m +---+m [m,...m €}

for v>> 0. One can show that the polynomi&ls, andE, have the same leading term, which is
the normalized volume d&&. Then we have the following result of Sturmfels.

Theorem 3.2 The toric variety Y, C P is normal if and only if the Hilbert polynomial H
equals the Ehrhart polynomial £

4 The BKK Theorem

So far, we have used the number of faces of a polytope (in thHenIS®mmerville equations)
and the number of lattice points (in the Ehrhart polynomi@ut what about the volume of the
polytope? This plays in subsidiary role in the Ehrhart polyal. It is now time for the volume to
take a more central role.

We will begin with a rather special situation. L&t R" be ann-dimensional lattice polytope.
Then considen Laurent polynomials

= Y cntMedt, Y, 1<i<n,
mcANM

wheret™ _tal -t3", m= (a,,...,an), is the character denotgd" in Lecture I.

Theorem 4.11f f,..., f, as above are generic, then the equations

have nvol(A) solutions in(C*)".

To prove this, we will work on the toric varietf,. By (2.7), the polynomiald; are global
sections of the ample line bundle= @’XA(DA). This means that for generic sections, we have:

e The number of solutions df; = --- = f, = 0 is finite.
e We can assume that the solutions lie in the tq@s)" C X,.

e The number of solutions is thefold intersection numbeD,)".

ConcerningD,, we note that sincX, is a possibly singular variety, we can't use the usual defini-

tion of intersection number coming from cup product on coblmgy. Instead, we use Kleiman'’s

intersection theory for normal varieties, which in thiseasaplies that

(Dy)"
n!

dim HO(XA,L®") = v" + lower order terms iv
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sincelL is ample. However, in the previous section, we showed that
dim HO(X,,L®Y) = E,(v) = vol(A) v" + lower order terms irv.

This shows that
(Dy)" = nivol(A).

Since this gives the number of solutionsfof= - -- = f, = 0in (C*)", the theorem is proved!
Theorem 4.1 can be generalized considerably. Supposaddtat we have arbitrary Laurent
polynomials
fi,..., fne CitEL, L 620,

Then letA, be theNewton polytopef f;, which means thah, is the convex hull of the exponent
vectors of the nonzero terms §f In this situation, one can define theéxed volume

MVo(Dy, ..., On).

This is discussed in Section 5.4 of Fulton’s book. ThenBleenstein-Kushnirenko-Khovanskii
Theorenis as follows:

Theorem 4.2 Consider the solutions ifiC*)" of the equations

(a) If there are only finitely many solutions, then the numberodditsons is bounded above by
MVh(Ay, ..., An).

(b) Ifthe f have generic coefficients, then the number of solutionslsduiéh (4, ..., An).
One of the properties of the mixed volume is that when all efgblytopes are the same, then
MVi(4,...,A) = nlvol(A).

It follows that Theorem 4.1 is a special case of the BKK theuore

5 Reflexive Polytopes and Fano Toric Varieties

The dualizing sheaf oR" is easily seen to be

Wpn = ﬁpn(_(n‘f‘ 1)),

which means that its dua¥p,(n+ 1) is ample. More generally, l&f be a complete Cohen-
Macaulay variety with dualizing shea,. Then we say thaV is Fanoif the dual ofcw, is an
ample line bundle.

The goal of this section is to characterize Fano toric visetFirst recall that the dualizing
sheaf of a toric varietX is

Wy = Ox (=3 pDp)-
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Itis customary to calKy = — 5, D, thecanonical divisorof X. Thus being Fano means that the
anticanonical divisor-Ky =y , D, is ample.

Being Fano is a very special property. Hence, in order foitdhie variety of a polytope to be
Fano, the polytope needs to be rather special. This is wherensounter Batyrev’s notion of a
reflexive polytopeHere is the precise definition.

Definition 5.1 A n-dimensional lattice polytop& C M, ~ R" is reflexive if the following two
conditions hold:

(a) All facets F ofA are supported by an affine hyperplane of the fgrme My, | (m,nz) = -1}
for some g € N.

(b) int(d) "M = {0}.

Reflexive polytopes have a very pretty combinatorial dyaliet A be an lattice polytope, and
let A° be the polar polytope defined in Section 1 of this lectureidigA°)° = A, Batyrev showed
that the basic duality betweénandA° is as follows.

Lemma 5.2 A is reflexive if and only ifA° is reflexive.

Reflexive polytopes are interesting in this context becadfisiee following result, which char-
acterizes Fano toric varieties.

Theorem 5.3 A complete toric variety X is Fano if and only if there is a reifle polytope) such
that X = X,.

To prove this, first assume thats reflexive. Then the definition of reflexive implies that

A=(){me Mg |(mng)>—1}.
F

Thusag = 1 for all F, which means that the associated divisor is

We know thatD, is ample, which proves that, is Fano. The converse is equally easy, and the
theorem is proved!

The simplest example of a Fano toric varietyP’s The next case to consider is weighted
projective space, where the answer is slightly more intergs

Lemma5.4 Let X=P(q,,...,0n) be a weighted projective space, and letG ! ;q;. Then X is
Fano if and only if ¢/q for all .

In any given dimension, there are only finitely many reflexpaytopes up to unimodular
transformation, which means that there are only finitely yntmmic Fano varieties of dimension
n up to isomorphism. Smooth toric Fano varieties have beessifiad in low dimensions, and
attempts are underway to class#lf 4-dimensional reflexive polytopes.
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Since reflexive polytopes come in pafksA°, we get toric Fano varieties,, X,. which are
in some sense dual. In Lecture lll, we will use these toricetms to create “dual” families of

Calabi-Yau hypersurfaces which are important in mirror syatry.
Here is an example of a reflexive polytope and its dual.

Example 5.5 Let M = Z3, and consider the cub& C Mg centered at the origin with vertices
(£1,£1,+£1). This gives the toric varietX = X,. To describe the fan oX, note that the polar
A° C Ny is the octahedron with verticese,, --€,, =-€;. Thus the normal fan is formed from the
faces of the octahedron, giving a faiwhose 3-dimensional cones are the octant&fit follows

easily thatX = P! x P! x PL.
We have the following pictures @ andA°:

o Z
).
' 2
A x

AT Mg A° O Ng

It is easy to check that the culdeC My and the octahedrofi® C N, are dual reflexive polytopes.
In particular,A° gives a “dual” toric varietyX® = X,., which is determined by the normal fan of
A° (= the fan inM, formed by cones over the faces of the cd)eHence we have a pair of “dual”
toric varieties X andX®. Itis interesting to observe thatis smooth whilexX® is rather singular. In
fact, the 3-dimensional conesBf are not even simplicial—they're all infinite pyramids. Hovee,
sinceA andA° is reflexive, we know thaX andX° are Fano.

Note thatA andA° also differ with respect to lattice points. Fst C N, the only lattice points
in N are the origin and vertices, while C M, has many more since the midpoints of the edges
and the centers of the faces lienh This example also shows that we can start with a smooth toric
variety (such a®! x P! x P1) and by “duality” wind up with something singular. As we wélée
in Lecture 111, this has implications for mirror symmetry.
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Lecture Ill: Toric Varieties and Mirror Symmetry

1 The Quintic Threefold

In 1991, Candelas, de la Ossa, Green and Parkes made sotiiegspaedictions about rational
curves on a generic quintic hypersurfate P* (thequintic threefold. In particular, they claimed
thatV contained the following numbers of rational curves:

e 2875 lines.

e 609250 conics.

e 317206375 cubics.

e 242467530000 quatrtics.

More generally, if we let

ny = “# rational curves of degregin V"

(we’'ll explain the quotation marks below), then Candelasieigave the following receipe far;:
(a) The differential equation

dy4 2.5/ d\3 7-5% / d\2
0 = (X&) y+1+55x<xd_x> y+1+55x<xd_x> y
2-5% (Xg) N 24.5x
115%\ax/) T 1y e
has a regular singular pointat= 0 with maximally unipotent monodromy.
(b) Two solutions of this differential equation are

400 = 5 (e (-1

n

and

00 5n
n=vobdoal 0 +55 O[3 ]-une
n= ' j=n

(c) The differential equation

(XE>Y - 115%(\/

has the solution

c
—_——___ cconstant
1+ 5%’

(d) Finally, settingc = 5 andq = exp(y; (X)/Yy(X)), we have
3 q¢ 5 1 gdx\3
5*; Mad"1 = @~ (1+55%) yo(x)2 (xdq)
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2 Instanton Numbers

Making sense of the numbeng is a nontrivial task. To define these rigorously, the firspstare
as follows:

« Define the moduli stacM, ,(P*,d) of 0-pointed stable curves : C — P* of genus 0 and
degreed.

« Define the vector bundIg; on M, ,(P*,d) whose fiber af : C — P*is H(C, f*,,4(5)).
Using this, we define th&romov-Witten invariantf the quintic threefold&/ to be

<|0,0,d> - /'V'o.o(lp’ﬂ'vd) Ctop(%)-

In 1995, Kontsevich computed that

15517926796875
<|o,o,4> - 64 '

Gromov-Witten invariants can be defined for any smooth t#ari®ne of the major unsolved
problems in mirror symmetry is to understand the enumezatignificance of these numbers.

For the quintic threefold, we can approach this problemgigistanton numbers sy which are
defined recursively by the equation

(ooa) =Y Nypck >
(T

Here are three important theorems about the instanton msmbthe quintic threefold.

Theorem 2.1 (Givental,Lian/Liu/Yau) The instanton numbegsaf the quintic threefold V satisfy
the identity given in item (d) on page 22.

Theorem 2.2 (Katz,Johnsen/Kleiman) For d 9, n, is the number of rational curves of degree d
contained in the quintic threefold V.

Theorem 2.3 (Pandharipande,Cox/Katz) If the strong form of the Clem€osjecture for the
quintic threefold V holds for & 10, then

n,, = # rational curves of degree 10 on6 x 17,601,000

In its weakest form, the Clemens Conjecture asserts thadfcind, a generic quintic threefold
contains only finitely many rational curves of degteeCurrently, this has been proved K 9.
So for higher degrees, we need to do two things:

e Prove the Clemens Conjecture.
¢ Relaten, to the number of rational curves of degitenV.

These are both open problems. Theorem 2.3 indicates thedltten in the second bullet may be
nontrivial.
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3 The Quintic Mirror

Items (a)—(c) page 22 come from the Hodge theory ofgtatic mirror V°. This is the threefold
defined as follows:

e Start with the quintic hypersurfacesi™ defined by
(3.1) X3 X3 + X3 3G )& + X XoXgXyXs = O,
wherey # 0 is a complex number such thgp # —5°.
e Take the quotient of the hypersurface under the action ofjtbep
G={(ay...,a5) €Z2| 3;8 =0 mod § /Z,
where theZ; is embedded diagonally amp= (a,,...,a5) € G acts onP* as

(le >X5) ( a1X1> try uaSXS)'

Here,u = €1/5 is a primitive fifth root of unity.
e Finally,Vy; is a resolution of singularities of the quotient hyperscefa

This gives a 1-dimensional family;, of smooth threefolds parametricized tpy Furthermorey,
is a Calabi-Yau threefold, so tth°v3(Vq‘j) has dimension 1. A holomorphic 3-form ®j is

Y
X4 R+ WXy - Xg

Xo0X; A dXg Adxy A dXg +XgdX AdX, Adxy AdXg—
X, 0% A dx, A dxg A dxg + Xs0xq A dx, Adxg AdX,)).

Q = Req (X, 0%, A dxg A dx, A dxg—

The periods of, as we varyk = >, satisfy the Picard-Fuchs equation given in item (a) page 22
Thus the functiong,(x) andy, (x) in item (b) on page 22 are periods of the quintic mirror family
Furthermore, using the Gauss-Manin connecfipmve define therukawa couplingo be

(3.2) (6,6,6) :/Q/\DQDQDQQ

wheref = xd—dx. This Yukawa coupling satisfies the differential equatioitém (c) on page 22.
Now we come to item (d) on page 22, which is the astonishingiégu

3 ¢ 5 1 /qdxy3
5*; Nad1 = @ (1+55%) yo(x)2 (xdq) '

This says that, after a change of variable, the Yukawa cogpin the quintic mirror gives the
instanton numbers on the quintic threefold. Hence we hairgkadktween

e the enumerative geometry of the quintic threefold, and

¢ the Hodge theory of the quintic mirror.
This is one of the most amazing aspects of mirror symmetry.
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Finally, as a hint of things to come, let’s explain the ralatbetween the quintic threefold and
its mirror in more intrinsic terms. First observe thaj, = 0p,(—5) has duald,,(5). It follows
that the quintic threefol® is an anticanonical divisor, which automatically makesatabi-Yau.
FurthermoreP* is the toric variety of the standard 4-simplex

A, =conv(0,e,e,,6;,6,) C My =R*.
While A, is not reflexive, one can show that
A=57,—(1,1,1,1)

is reflexive and satisfiex, = P,
The polar ofA is the reflexive polytope

A" =conv(—e; —e,—e;—€,,€;,8,,65,6) C Ng.
This gives the “dual” toric variet,.. Section 4.2 oMirror Symmetry and Algebraic Geometry
shows that:

o Xy = P4/G, whereG is the group introduced above.
e The homogeneous coordinate ringgf is C[xy,...,%,]. This is graded by @ G, where the
degree of a monomiacgo . -xj4 is
(Siioy, (8 —a, — 358y,8y,8,,85,8y)) € ZDG.

e The anticanonical divisor has degrgg0) € Z @ G, where Oc G is the identity. Furthermore,
the only monomials of degre®, 0) are

X87 X?? Xg? X§7 Xésb XX XoX3%y.-
The last bullet shows that anticanonical hypersurfaces,orare defined by equations of the form
8GX3 + 87X + X3 + 83X + 8,XG + BgXoXy XpXaXy = 0.

However, using the torus action to rescale the variablasithehlly, one easily sees that every such
hypersurface is isomorphic to one defined by an equatiorediitm (3.1). Hence the construction
of the quintic mirror is a special case of the Batyrev mirronstruction, which will be described
in more detail in Section 5.

4 Superconformal Field Theory

Our next task is to discuss the physics which led Candelasignmbworkers to their formulas for
ny. But before plunging into mirror symmetry, let me point cuat modern mathematical physics
uses an amazing amount of algebraic geometry and commneigdgjebra.

For example, consider the following brief description of@ndau-Ginzburg theoryIn the
Lagrangian formulation of such a theory, the most importamh of the action is

S= /dzzdzeF(CDi),

where:
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e zis alocal coordinate on the Riemann surface.
e 0O is afermionic superspace coordinate.
e F is a weighted homogeneous polynomial.

e @, is a chiral superfield.
In this situation, the Euler-Lagrange equations are

oF
— =0,
o4
whereq is the bosonic component df.
Starting from the vaccum stag we can create new states®d;)(V), whereP is a polynomial

inthe @. By the Euler-Lagrange equations, these states corregpaiements of the quotient

33) Clay )/ (G 35,

This is thechiral ring of the Landau-Ginzburg theory.

Now, if you are like me, most of the above made absolutely mseseBut (3.3) is a Jacobian
ring! These are objects | know well—they're even mentionedny papers! But a chiral ring?
What'’s that?

This is the problem faced by mathematicians trying to urtdas mirror symmetery—the
physics is very sophisticated. For me, the most frustragisygect is that | don't have access to
the intuitions that lie behind these magnificent but matherally nonrigorous theories.

Keeping this problem in mind, let me say a few words aboutonisymmetry. Brace yourself
for a lot of incomprehensible words.

Given a smooth Calabi-Yau threefoldland a complexified Kahler class (to be described in
Section 6), we get & = 2 heteroticsuperconformal field theorfSCFT) called as-model. Such
theories deal with strings propagatingR&! x V, though we typically ignore the spacetifé!
and concentrate on thépart. This leads to maps from Riemann surfacesVhto

Any N = 2 SCFT includes a Hilbert spat¢ of states and a representatiomgl) x u(1) on
H. For theo model case, this representation has eigenspaces:

(p,q) — eigenspace- HI(V, APT,) ~ H3 PA(V)

(3.4) )
(—p,q) —eigenspace- HI(V,Qf) ~ HPA(V).

We also note that the moduli space of SCFTs coming faemodels is governed by
e Complex moduli (vary the complex structure\oy.
e Kahler moduli (vary the complexified Kahler class).

In the 1980’s, it was noticed that changing the sign of the §enerator of thei(1) x u(1)
representation gave abstractSCFT isomorphic to the original one. The basic idea of mirror
symmetry is thathis abstract SCFT should be tl'emodel of some other Calabi-Yau threefold,
themirror V° of V. Since the sign change interchanges the eigenspaces (3dlpws that

HPA(V) ~ H3-PA(ve).
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This also interchanges complex and Kahler moduli, so tiatcbmplex (resp. Kahler) moduli of
V becomes the Kahler (resp. complex) modul/6f

Example 4.1 The quintic threefoldv has 1-dimensional Kahler moduli becaudé(V,C) =
HL1(V) ~ C. It follows that the quintic mirro° should have 1-dimensional complex moduli. So
the presence of the single moduli parameter (y—° for the quintic mirror is no accident.

The fact thatv andV®° give isomorphic SCFTs implies that they have the sdhmeepoint
correlation functionsFor the quintic threefol¥, the correlation function of interest {81,H,H),
whereH is the hyperplane section f. This starts off as some sort of Feynman path integral but

can be reduced to |

- 3. 9
(H,H,H) 5+[g1ndd Tk
In the right-hand sidell UH UH = 5 is the “topological term” and the, are holomorphic instan-
tons which arise as non-perturbative world sheet correstio
On the mirror side, the Yukawa couplir§, 8, 6) defined in (3.2) is also a correlation function,
though to normalize it, we need to divide b@(x)z. Then mirror symmetry says that these corre-
lation functions coincide once we change variables acogrth the mirror map. This is the map
which takesxd/dxto qd/dg, whereq s as in item (d) on page 22. Thus we obtain the equation

% d
3 8 5 1 ,qdxy3
5+dzlndd 1—qd  (1+5°) Y,(x)2 (xdq)

from page 22.

5 The Batyrev Mirror Construction

Now letA C Mg ~ R" be ann-dimensional reflexive poltyope with polAf C N,. Then Batyrev's
basic observation is each polytope gives a family of anto#&al hypersurfaces

V C X,
V° C Xy

each of which is a Calabi-Yau variety of dimensioa 1. This is theBatyrev mirror construction
Here are some interesting facts about Batyrev mirrors:

e We writeV andV" instead o/ andV° is that the former may be singular. In general, one needs
to desingularize. However, since a Calabi-Yau variety hamt canonical class, this needs to
be done without changing the canonical class—a so-callexpant desingularization”. This
works nicely whem = 4 (the case of interest to physics), but in higher dimensameshas to
settle for resolutions wheié andV° are orbifolds (of an especially nice type).

e Whenn =4,V andV° are smooth Calabi-Yau threefolds, and it is expected thegt should
satisfy mirror symmetry. There is a physics “proof” of thik@nA is a reflexive simplex, but
the general case is still open.
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e In general, wheV andV° have dimensiom— 1, we have
dimHY (V) =dimH"21(v°) and dimH""21(V)=dimHb1(ve).
WhenV andV°, this takes care of all Hodge numbers. But in higher dimarssio
dimHPA(V) # dim H"—1-Pa(ve)

can occur in cases wh&handV° are simplicial but not smooth. To remedy this, one defines
stringy Hodge numbersf¥(V) which satisfy the mirror equation. These are related to the
recently-definearbifold cohomologyf an orbifold.

e In 1992, researchers discovered 7555 weighted projegbia@ees which gave rise to Calabi-
Yau threefolds. But this list exhibited only a partial syntnge How could this be consistent
with mirror symmetry? The answer is that the list was produgoefore Batyrev’s definition
of reflexive polytope. When the list was recomputed in 199 a@hof the “missing mirrors”
were found using Batyrev duality.

6 Other Aspects of Mirror Symmetry

Here are some of the many aspects of mirror symmetry not oreediso far:
e Complexified Kahler Cone.LetV be a Calabi-Yau of dimension 3. Then

H?(V,R) = H(V), D K — Kahler cone oV,
The complexified Kahler space is
Ke = {B+iJ | J€K,Be H3(V,R)}/H3(V.Z).

This is a basic building block for the Kahler moduli spac&/of

e Boundary Points of Moduli Spaces.Mathematical versions of mirror symmetry take place at
boundary points of moduli spaces. For the quintic threefold ¢y~ is a local coordinate for
amaximally unipotent boundary poirithe corresponding point on the boundary of the Kahler
moduli space is &arge radius point

e Multiple Mirrors and the GKZ Decompostion. When we compare the complex moduli\of
to the Kahler moduli o¥/°, the latter is typically much smaller than the former. Thigsin't
seem consistent with mirror symmetry. The answer is to gaeldre Kahler moduli space. For
example, inthe toric case, it can happen that different bomapfansz can refine the normal fan
of a reflexive polytopd\. The toric varietieXs have the samel? but different Kahler cones.
All of this can be described torically using tlKZ decomposition(This is the smaller version
of the decomposition, which in physics terms correspondlé@-models of the Calabi-Yau
hypersurfaces in th¥s. The larger version includes more cones which correspomeitain
Landau-Ginzburg theories.)

e Mirror Theorems. For Calabi-Yau complete intersections in Fano toric vaagiGivental and
Lian/Liu/Yau have proved very powerful Mirror Theorems wihigeneralize the formula at the
bottom of page 22.
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e Quantum Cohomology and the A-Variation of Hodge Structure. Gromov-Witten invariants
can be used to define a deformation of cup product cagjleshtum cohomologyrhis is related
to a (1+1)-dimensionabpological quantum field theoryOne can also turn this into th&-
variation of Hodge structurewvhich is a polarized variation of Hodge structure over tiénker
moduli space. Mirror symmetry can be formulated as the iesethat the A-VHS oV over
its Kahler moduli space is isomorphic (as a polarized VHShe geometric VHS 0¥ ° over
its complex moduli space.

e Conifold Transitions. Every family of Calabi-Yau threefolds gives a model of théverse. In
1995, Greene/Morrison/Strominger discovered how to gehfone model to another by what
is called aconifold transition This can be pictured as follows:

v — \ — Vv
degenerate resolve

" " 3 3

black vanishing elementary

hole cycle massless particle

e Modern Mirror Symmetry. What | have described so far can be described as “classical”
mirror symmetry. More recently, people have explored thiedang topics:

< Homological mirror symmetry (Kontsevich).

<& D-branes, F-theory, M-theory (physics).

< Ve is the complexified moduli space of Lagrangian torNoStrominger/Yau/Zaslow).
<& Vertex algebras (Borisov).

<& Chiral De Rham complexes (Malikov/Schechtman)

e Science Fiction.In 1998, Stephen Baxter wrote the science fiction nd¥ebnseed Here is
some of the dialog between characters named Monica anddAlfre

k*kkkkkkkkkkk

Monica: Now, the 6 missing dimensions are there, but thexampled up ... The trouble
is, there are tens of thousands of ways for space to crumple ugAnd in each internal space,
the strings adopt a different solution.

*kkkkkkkkkkk

Monica: Theoreticians are suggesting there is a—tear ioespat the heart of Venus.
Alfred: A tear?

Monica: A way into another internal space. Exotic parti@desnassive as bacteria.

k*kkkkkkkkkkk

Alfred (in an email to Monica): Take one of your 10-dimensbstring objects ... As you
approach zero width, you generate quantum-mechanicalsvave The waves are extremal
black holes.
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