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Newton’s Method for
Polynomials

Newton's Method doesn’'t always

converge to a root.

Example: f(z) = 23 — 5z gives

f(x) _ 3 — 5z

N has the 2-cycle 1 - -1 —-1—



Can do Newton's Method over C:



Here iIs Newton's Method for
3 — 1 over C:

Initial values which converge to 1
are shaded black.



Naive Guess:
For a dense open subset of initial
values, Newton’'s Method converges

to a root.

Counterexample: Let

o f(x) :%:133—:134—1.
_ f(x)

o N == (1)

T hen:

e 0O—1—0—--- under N.

e N'(0) = 0, so attracting 2-cycle.
Hence initial values near O or 1
do not converge to a root under
Newton's Method.



Generally Convergent
Iterative Algorithms

In 1985, Smale asked for an iterative

algorithm which:

e is rational in the coefficients of a
polynomial, and

e converges generally to a root of the

polynomial.

Generally convergent means that for

f=z"+ajz™ 1+ +an,

e for (ai1,...,apn) in a dense open subset
of C", and

e fOr zp IN a dense open set of C,

the algorithm converges to a root of f.



In 1987, McMullen proved that an
Iterative, generally convergent al-

gorithm doesn’'t exist when n > 4.

Also, for n = 3, consider

f(z) =23+ ax + b.

hen one can show:
e Newton’'s Method for f(x) is
not generally convergent.
e Newton’'s Method for
f(x)
3ax? + 9bx — a

IS generally convergent.




Definition of a Generally Con-
vergent Iterative Algorithm:

Consider a field K which is:

e a finite extension of C(t1,...,tn),
or equivalently,

e the rational function field C(V)
of an irreducible variety V.

(An example is V = C".)

Definition: A rational iterative
algorithm is an element T € K(z),
where z iIs a coordinate on

Pl=CuU{x}.



Example: For K = C(a1,...,an)
and V = C" Newton’'s Method is

a2 L Fay

nz"~l+...4a, 1

This is an element of K(z).

N =z

Notation: Let T € K(z). For
most v € V, Ty, € C(z) is defined.
Thus T, : Pl — P1L,

Definition: 7T is generally con-
vergent if {T]'(z)}>2y converges
for (v,z) in a dense open subset
of V x P1,



T he McMullen Rigidity
T heorem

Theorem: If T is generally con-
vergent, then for v in a dense open
subset of V, the maps 1, are all
conjugate under PGL(2,C).

Example: For K = C(t), T; =

2 —t
nzn—l

If $(z) = z/a, then

IS generally convergent.

Z

poTiod™ "t =Ty



Note also that a = ¥/t implies

2 —1

T,=¢ ‘ofog, f=-z

This will be useful later.

Corollary: No generally conver-
gent iterative algorithm for gen-

eral polynomial of degree > 4.

Proof:. If such an algorithm ex-
Isted for a general polynomial of
degree n, then the roots would be
conjugate under PGL(2,C).



More precisely, suppose f,g have
degree n. If f has roots a;, then
we can find z; with

T (z) — a;
If we have ¢ € PGL(2,C) with
poTrog 1 =Ty,
then setting w; = ¢(z;) implies
Ty (w;) — ¢(a;)

Thus the ¢(a;) are the roots of g.

But the action PGL(2,C) on P!
IS only 3-transitivel



A Galois Theory of
Generally Convergent
Iterative Algorithms

The output of T is the set
Output(T)

consisting of all (v,w) € V x P1
such that

w=lim_ T (z)
for an open set of z's. Note that

Output(T) C {(v,w) | Ty(w) = w}.



Let Output(7T) be the smallest
variety containing Output(T).

Definition: A generally conver-
gent iterative algorithm T € K(z)
is irreducible if Output(T) is an
Irreducible variety. We denote its
function field by K.

Such a T gives a finite extension
K C KT.

Let K’ be the Galois closure of
this extension and set

G = Gal(K'/K).



Theorem: (Doyle/McMullen)

If T iIs as above, then there are:

e f(z) e C(z)

e » € PGL(2,K')

e p:. G — PGL(2,C) injective

such that:

DT =¢"1ofod

2) {f"(2)};L converges on a
dense open set of P!

Furthermore:

3) fop(g) =p(g)of forall geG.

4) ¢9 = p(g) o for all g € G.
5) All irreducible generally

convergent iterative
algorithms arise this way.



Example: Let K = C(t) and

2 — ¢
T = 2 . T'hen we have:
nzn—l

Kr =K' = C(V1).

Furthermore:
2z —1
° f — < nzn—l'
.o = (1/0\5 (1)) c PGL(2, K').

e G = {0}, (VD) = L VA

_ (¢t o
e o(c;) = ( 0 1) c PGL(2,C).



Definition: K C L iscomputable

If there are fields
K=KgCK{C---CKn

such that:

o . C K, and

e [ here are generally convergent
irreducible T; € K;(z) such
that K; 1 = (K;), for all i.

Definition: A finite group is
called nearly solvable if its
Jordan-Holder components are

either cyclic or Asg.



The Doyle/McMullen
T heorem and the Quintic

Theorem: K C L is computable
< Gal(L'/K) is nearly solvable,
L' = Galois closure of K C L.

Proof:. We can assume the
Galois group is cyclic or As.

By the Doyle/McMullen theorem,
we need to find f, ¢, p.

Cyclic Case: Done by previous

examplel



A Case: Solve the quintic by
iteration. First use Tschirnhaus
transformations to reduce to

22 —10Cz3 4+ 45C%2 — C2%2 = 0.

This iIs the Brioschi resolvent.

Next project the icosahedron onto
S2 and then map to the plane
via sterographic projection. Then
consider

F(z,y) =a'ty + 112%° — ay't.

This is invariant under the binary
iIcosahedral group and vanishes at
the 12 vertices.



Then the rational function
Go(2,1)
OF (2,1)

211 -+ 662° — 112
11210 4+ 6625 -1

has nice properties:

f11(2)

e f11 commutes with Ag.

e The 20 face centers are the
critical points of f11.

e f11(face center) = center of
antipodal face.

Thus the face centers give ten

2-cycles for f11.



Dynamical Systems Theory =
there iIs a dense open set of pl

on which

{f11(z) }n=o0

converges to of the ten 2-cycles.

Then f = f11 o f11 is what we
want! It remains to:

o Find ¢.

e Compute T=¢ 1o fodo.

e Relate to Brioschi resolvent.

This gives the following algorithm.



T he Algorithm

Define ¢g(Z,w) to be the polynomial:

011252° 4+ (—133650w? 4+ 61560w—
193536)2° + (—66825w* + 142560w>
133056w? — 61440w + 102400)Z%+
(5940w® 4+ 4752w° 4+ 63360w*—
140800w3)Z3 4 (—1485w® + 3168w —
10560w®)Z2 + (—66w'® 4+ 440w>)Z 4+ wt?

Define h(Z,w) to be the polynomial:

(1215w — 648)Z% 4+ (—540w> — 216w’ —
1152w 4+ 640)Z3 4+ (378w° — 504w+
960w3)Z2 + (36w’ — 168w°)Z



To solve s®> — 10Cs3 + 45C%s — C? = 0,
proceed in five steps:

1) Set Z=1-1728C.

2) Compute the rational function

9(Z,w) |
997, w)

T, =w— 12

3) Iterate T (T7(w)) on a random start-
ing point until it converges to a limit
point wg. Set wy; = Ty (wq).

4) For 1 = 0,1 compute

~100Z(Z — 1)h(Z, w;)

B 9(Z, w;) |

5) Finally, for i = 0,1, compute

_ O+ V-15)p;+ (9 — vV-15)p1,

90
Then sg and s are two roots of the

Hi

Si

Brioschi resolvent!



