Using Algebraic Geometry, second edition

December 20, 2023

Errata:

Page 9, line 4: Replace " $\alpha \cdot \mathbf{w}_{1}$ and $\alpha \cdot \mathbf{w}_{1}$ " with " $\alpha \cdot \mathbf{w}_{1}$ and $\beta \cdot \mathbf{w}_{1}$ "
Page 18, line 6: "second polynomial" should be "first polynomial"
Page 28, line 4: Replace "last" with "first"
Page 39, line -7: Replace " $\mathbf{V}(I) \subset \mathbb{C}^{n}$ " with " $\mathrm{V}(I)=\left\{a \in \mathbb{C}^{n}: f(a)=0\right.$ for all $\left.f \in I\right\}$ "
Page 45, part c of Exercise 9: Delete and replace with "Show that $1=\sum_{j}\left(1 / p_{j}\left(a_{j}\right)\right) p_{j}$."
Page 46, Exercise 11: Add a new part c of the exercise as follows:
c. For readers familiar with the Hermitian inner product $\langle z, w\rangle=\sum_{i=1}^{n} z_{i} \bar{w}_{i}$ for $z, w \in \mathbb{C}^{n}$, let

$$
h_{i}(x)=\prod_{j \neq i}\left\langle x-p_{i}, p_{i}-p_{j}\right\rangle .
$$

Show that $g_{i}(x)=h_{i}(x) / h_{i}\left(p_{i}\right)$ satisfies part b.
Page 54, line 5: Replace " $L\left(x-\sum_{j} c_{j} x^{\alpha(j)}\right)=0$ " with " $L\left(x^{\alpha}-\sum_{j} c_{j} x^{\alpha(j)}\right)=0$ "
Page 55, line 2 of Exercise 2: Replace " $x^{\alpha}>x_{1}^{a}$ " with " $x^{\alpha} \geq x_{1}^{a \text { " }}$
Page 55, line 2 of Exercise 3: Replace "let x^{α} be" with "let $x^{\alpha}=x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}$ be"
Page 65, line 7 after the second display: Replace " $i_{1}>\cdots>i_{l}$ " with " $i_{1}<\cdots<i_{l}$ "
Page 71, lines 4-8 of the proof of Theorem (5.2): Replace "Hence we will only ... invertible matrix" with "Hence we will only discuss the broad outline of the proof. In the case when I is radical, it is possible to turn the sketch that follows into a rigorous proof."
Page 75, line -3 : Replace " $-\operatorname{rem}\left(p_{i-1}(t), p_{i-2}(t), t\right) "$ with " $-\operatorname{rem}\left(p_{i-2}(t), p_{i-1}(t), t\right) "$
Page 75 , line -2 : Replace "division of p_{i-1} by p_{i-2} " with "division of p_{i-2} by p_{i-1} "
Page 82, line 2 of Exercise 7: Replace " $\operatorname{deg}(r)<\operatorname{deg}(g)$ " with " $\operatorname{deg}(r)<\operatorname{deg}(f)$ "
Page 92, line 8: Replace "degrees d_{1}, \ldots, d_{n} " with " d_{0}, \ldots, d_{n} "
Page 97, lines 21 and line 24: Replace "Theorem (2.6)" with "Proposition (4.7)"
Page 100, line - 2: Replace"Theorem (2.6)" with "Proposition (4.7)"
Page 101, part b of Exercise 10, line 2: Replace "Theorem (2.6)" with "Proposition (4.7)"
Page 102, part c of Exercise 11, line 2: Replace "multiplication by $(-1)^{n}$ " with "multiplication by $(-1)^{n-1 "}$
Page 102, part d of Exercise 11: Replace "Theorem (3.5)" with "Theorem (3.4)"
Page 106, line 2 of Exercise 8: Replace "total degree 420" with "total degree 210"
Page 107, line 2 of the proof of Proposition (4.7): Replace " $n-1$)! ways" with " n ! ways"

Page 108, line 2 of Exercise 11: Replace " D_{3}^{\prime} " with " D_{2}^{\prime} "
Page 109, line 3: Replace "Exercise 10" with "Exercise 11"
Page 113, part d of Exercise 22: Replace part d with "Use part c to show that the determinant in (2.8) vanishes whenever $F_{0}=F_{1}=F_{2}=0$ has a nontrivial solution."

Page 120, line 6 after display (5.12): Replace " $u_{1}=\cdots=u_{n}=0$ " with " $u_{1}=\cdots=u_{n-1}=$ $0 "$

Page 123, line 11: Replace " $A=\mathbb{C}(u)\left[x_{1}, \ldots, x_{n}\right] /\left\langle u-x_{n}, f_{1}, \ldots, f_{n}\right\rangle$ " with
" $A=\mathbb{C}\left(u_{0}\right)\left[x_{1}, \ldots, x_{n}\right] /\left\langle u-x_{n}, f_{1}, \ldots, f_{n-1}\right\rangle "$
Page 123, line 19: Replace " $\widehat{A}=\mathbb{C}\left(u_{0}\right)\left[x_{1}, \ldots, x_{n-1}\right] /\left\langle\hat{f}_{1}, \ldots, \hat{f}_{n}\right\rangle$ " with
" $\widehat{A}=\mathbb{C}\left(u_{0}\right)\left[x_{1}, \ldots, x_{n-1}\right] /\left\langle\hat{f}_{1}, \ldots, \hat{f}_{n-1}\right\rangle "$
Page 125, last display: Replace " $F_{0}=\cdots=F_{n}=0$ " with " $F_{1}=\cdots=F_{n}=0$ "
Page 126, line 8: Replace " $f_{0}=\cdots=f_{n}=0$ " with " $f_{1}=\cdots=f_{n}=0$ "
Page 129, line -2 : Replace " $x^{\alpha} / x_{i}^{d_{i}}$ has degree $\leq d-d_{i}$ " with " $x^{\beta} / x_{i}^{d_{i}}$ has degree $\leq d-d_{i}$ "
Page 131, lines 1 and 2 following second-to-last display: Replace "Exercise 12 of Chapter 2, $\S 4 "$ with "Exercise 12 of Chapter 2, $\S 2$ "
Page 134, line 2 of Exercise 3: Replace " $\left(u_{0}, u_{1}, u_{2}, u_{3}\right)=(0,1,0,0)$ " with " $\left(u_{0}, u_{1}, u_{2}\right)=$ ($0,1,0$)"

Page 137, line 14: Replace "both these types" with"both types"
Page 138, line - 12: Replace "if $N \neq M$ is an ideal in R with $M \subset N \subset R$," with "if $N \not \subset M$ is an ideal in R,"

Page 138, lines -10 to -8 : Replace "Therefore $M \ldots$ contained in M. with "Therefore, every proper ideal of R is contained in M. Hence M is maximal and is the only maximal ideal of R."

Page 142, line 3: Replace " $\sum_{n \geq 0} f_{n}(x)$ " with " $\sum_{m \geq 0} f_{m}(x)$ "
Page 143, line 4: Replace " $f_{n}(x)=\sum_{\substack{\alpha \in Z_{\geq 0}^{n} \\|\alpha|=n}} c_{\alpha} x^{\alpha "}$ with " $f_{m}(x)=\sum_{\substack{\alpha \in \mathbb{Z}_{\geq 0}^{n} \\|\alpha|=m}} c_{\alpha} x^{\alpha "}$
Page 143, line 5: Replace the display with $h_{m}=f_{m} g_{0}+f_{m-1} g_{1}+\cdots+f_{0} g_{m}$."
Page 143, line 7: Replace " n " with " m "
Page 147, part c of Exercise 1: Delete "uniquely"
Page 147, part a of Exercise 2: Replace " $\mathbf{V}\left(x^{2}-2 x+y^{2}, x^{2}-4 x+4 y^{4}\right)$ " with " $\mathbf{V}\left(x^{2}-2 x+\right.$ $\left.y^{2}, x^{2}-4 x+4 y^{2}\right) "$
Page 147, part b of Exercise 2: Replace " $\left\langle x^{2}-2 x+y^{2}, x^{2}-4 x+4 y^{4}\right\rangle$ " with " $\left\langle x^{2}-2 x+\right.$ $\left.y^{2}, x^{2}-4 x+4 y^{2}\right\rangle "$
Page 149, line -18: Replace "note that that" with "note that the"
Page 152, line 6: Replace "Proposition (5.9)" with "Proposition (5.15)"

Page 152, line 3 of Exercise 3: Replace " $f_{2}=6 y-x^{3}+9 x$," with " $f_{2}=6 y-x^{3}+9 x=0$," Page 152, line 1 of part e of Exercise 3: Replace $" \operatorname{Res}\left(f_{1}, f_{2}, y\right)$ " with " $\operatorname{Res}^{y}\left(f_{1}, f_{2}\right)$ as defined in (5.14) of Chapter 3"
Page 152, line 4 of part e of Exercise 3: Replace "Res $\left(f_{1}, f_{2}, x\right)$ " with " $\operatorname{Res}^{x}\left(f_{1}, f_{2}\right)$ "
Page 156, part c of Exercise 10, line 4: Replace " $A_{i} \Leftrightarrow f(p)=\lambda$ " with " $A_{i} \Leftrightarrow f\left(p_{i}\right)=\lambda$ "
Page 160, line -2: Replace " $\operatorname{ker}(M) \cap \mathbb{Z}_{\geq 0}^{n}$ " with " $\operatorname{ker}(M) \cap \mathbb{Z}^{n}$ "
Page 161, line -3 : Replace " $S=\{1+g: \operatorname{LT}(g)<1\}$ " with " $S=\{1+g: g=0$ or $\operatorname{LT}(g)<$ 1\}"

Page 163, line 1 of part a of Exercise 5: Replace "let $h \in A$ " with "let $h \in \operatorname{Loc}_{>}(A)$ "
Page 163, line 1 of part b of Exercise 5: Replace "Let $r \in R$ " with "Let $r \in \operatorname{Loc}>(A)$ "
Page 166, lines -20 and -18 : Replace " $t^{a}>t^{a^{\prime}} x^{\beta "}$ with " $t^{a}>^{\prime} t^{a^{\prime}} x^{\beta \text { " (twice) }}$
Page 171, line 3 of part c of Exercise 8: Replace " $1 /(1+h)$ " with " $1 /(1+g)$ "
Page 172, line 2 of Exercise 11: Replace "(for local orders)" with "(for degree-anticompatible orders)"

Page 172, line 1 of part a of Exercise 11: Replace "Let $>$ be a local order" with "Let $>$ be a degree-anticompatible order"
Page 193, line -2: Replace "When M and N are free modules," with "When $M=R^{l}$ and $N=R^{m}, "$

Page 197, line -10: Besides the 1994 paper [PW] by Park and Woodburn, we should also mention two other papers that deal with algorithmic aspects of the Quillen-Suslin result:
L. Caniglia, G. Cortiñas, S. Danón, J. Heintz, T. Krick and P. Solernó (working group N. Fitchas), Algorithmic aspects of Suslin's proof of Serre's conjecture, Comput. Complexity 3 (1993), 31-55
N. Fitchas and A. Galligo, Nullstellensatz effectif et conjecture de Serre (théorème de QuillenSuslin) pour le calcul formel, Math. Nachr. 149 (1990), 231-253.
Page 199, line 4: "Equivalently. we think" should be "Equivalently, we think"
Page 200, line 18: Replace "one-one" with "one-to-one"
Page 201, line -2 of proof of Proposition (1.11): Replace " $\sum c_{i} m_{i}$ " with " $\sum c_{i} f_{i}$ "
Page 203, line 1: Replace "Let $\varphi: M \rightarrow N$." with "Let $\varphi: M \rightarrow N$ be an R-module homomorphism."
Page 203, line 2 of part a of Exercise 23: Replace " $\{a f: a \in I, f \in M\}$ " with " $\left\{\sum_{i=i}^{\ell} a_{i} f_{i}\right.$: $a_{i} \in I, f_{i} \in M$ for $\left.i=1, \ldots, \ell\right\}^{\prime \prime}$.
Page 203, line -16: Replace "We let $R=k[x, y]$ " with "Let $R=k[x, y]$, where k is a field of characteristic different from 2,"
Page 203, lines -9 to -1 : Delete and replace with the following:
a. Verify that $\mathbf{f}=\left(f_{1}, f_{2}, f_{3}\right)^{T}=(1,-x / 2,-1 / 2)^{T} \in R^{3}$ satisfies $(1+x) f_{1}+(1-y) f_{2}+$ $(x+x y) f_{3}=1$.
b. Let I be the 3×3 identity matrix. Verify that the columns $\mathbf{g}_{1}, \mathbf{g}_{2}, \mathbf{g}_{3}$ of the matrix $I-\mathbf{f} \cdot A$ span $\operatorname{ker} A$. Hint: If $A \tilde{\mathbf{f}}=0$, then $\tilde{\mathbf{f}}=(I-\mathbf{f} \cdot A) \tilde{\mathbf{f}}$ is a linear combination of the columns of $I-\mathbf{f} \cdot A$.
c. Show that $\left\{\mathbf{g}_{1}, \mathbf{g}_{2}\right\}$ is a basis of $\operatorname{ker} A$. (Unfortunately, the result of part c is special to the choice of \mathbf{f} made in part a. If \mathbf{f} is an arbitrary solution of $A \mathbf{f}=1$, then the first two columns of $I-\mathbf{f} \cdot A$ need not give a basis of the kernel.)

Page 204, part b of Exercise 27, line 2: Replace "of f is a nonzero element of R " with "of \mathbf{f} is a nonzero element of k "

Page 205, line 5: Replace "show that M " with "then M "
Page 205, line 6: Replace " R^{l} to R^{m} " with " R^{m} to R^{l} "
Page 206, line 1: Replace "(compare Exercise 6 and the discussion preceding Exercise 7)" with "(compare Exercise 11 and the discussion preceding Proposition (1.10))?
Page 206, line 3, Replace "column e_{2} " with "column e_{1} "
Page 206, line 5, Replace "row 2 column 1" with "row 1 column 2"
Page 210, lines -9 and -8: Replace "(see Exercise 5 below)" with "(see Exercise 11 of §3)"
Page 211, Exercise 1: Replace "Show" with "Assuming conditions a and b, show"

Page 215, bottome line: Replace "(1.6)" with "(1.5)"
Page 219, part a of Exercise 2, line 2: Replace " $(\mathrm{dp}, \mathrm{C})$ " with " $(\mathrm{dp}, \mathrm{c})$ "
Page 219, line -5: Replace "letter C" with "letter c"
Page 219, line - 3: Replace "lower-case c" with "upper-case C"
Page 219, lines -2 and -1 : Replace "(dp,C)" with"(dp,c)"
Page 223, line -5: Replace " $\sum_{k=1}^{s} a_{i j k} \mathbf{g}_{k} "$ with " $\sum_{\ell=1}^{s} a_{i j \ell} \mathbf{g}_{\ell}$ "
Page 223, line -4: Replace " $a_{i j k} \in R$, and $\operatorname{LT}\left(a_{i j k} \mathbf{g}_{k}\right) \leq \operatorname{LT}\left(S\left(\mathbf{g}_{i}, \mathbf{g}_{j}\right)\right.$ for all i, j, k " with $" a_{i j \ell} \in R$, and $\operatorname{LT}\left(a_{i j \ell} \mathbf{g}_{\ell}\right) \leq \operatorname{LT}\left(S\left(\mathbf{g}_{i}, \mathbf{g}_{j}\right)\right.$ for all $i, j, \ell "$
Page 224, line 12: Replace "Exercise 1" with "Exercise 2"
Page 227, line -2: Replace " $\left(A G I_{t}-A B\right)$ " with " $\left(A D I_{t}-A B\right)$ ".
Page 229, line 16: Replace "the t vectors" with "the s vectors"
Page 229, line 18: Replace " $1 \leq k \leq t$ " with " $1 \leq k \leq s$ "
Page 231, line 2: Replace " $R^{n+t+s "}$ with " $R^{m+t+s "}$

Page 232, line 4 of Exercise 9: Replace " $\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{s}\right) \in R^{s}$ such that $\mathbf{a}_{1}, \ldots, \mathbf{a}_{s}$ " with " $\left(a_{1}, \ldots, a_{s}\right) \in R^{s}$ such that a_{1}, \ldots, a_{s} "
Page 237, line -6: Replace "Hence" with "If $s>1$, then"
Page 237, line -2 : Add the sentence "If $s=1$, then $\left(1-a_{1}\right) f_{1}=0$. This implies $f_{1}=0$, which contradicts $M \neq 0$.
Page 239, line 1: Replace "matrix of $M / \mathfrak{m} M$." with "matrix of $M / \mathfrak{m} M$?"
Page 239, line 10: Replace "columns of M " with "columns of A "
Page 239, line 13: Replace "in $P / I P$ " with "in $M / I M$ "
Page 240, line 4: Replace "have have" with "have"
Page 242, line 14: Replace " $m \times 1$ matrix" with " $r \times 1$ matrix"
Page 242, Proposition (4.11): Replace " Q be a local ring, M a finitely generated Q-" with " R be a local ring, M a finitely generated R-"
Page 243, line - 16: Replace " $M / \mathfrak{m} M$ Since" with " $M / \mathfrak{m} M$. Since"
Page 245, part c of Exercise 10: Replace " $0=F_{0}(M) \subset F_{1}(M) \subset \cdots \subset F_{s+1}=R$ " with $" 0=F_{-1}(M) \subset F_{0}(M) \subset \cdots \subset F_{s}=R "$
Page 248, line -9: Replace "Exercise 12" with"Exercise 28"
Page 253, line -6: Replace with " $M=\left\langle y z-x w, y^{3}-x^{2} z, x z^{2}-y^{2} w, z^{3}-y w^{2}\right\rangle$ "
Page 254, line 1: Replace with "M = ideal ($y * z-x * w, y^{\wedge} 3-x^{\wedge} 2 * z, x * z^{\wedge} 2-y^{\wedge} 2 * w, z^{\wedge} 3-y^{*} w^{\wedge} 2$)"
Page 260, line after second display: Replace "im $\left(\varphi_{2}\right)=\operatorname{Syz}\left(G_{1}\right)$ " with "im $\left(\varphi_{2}\right)=\operatorname{Syz}\left(G_{0}\right)=$ $\operatorname{ker}\left(\varphi_{1}\right)$ in $F_{1} "$
Page 260, lines 1 and 2 after second display: Replace "obtain $\varphi_{i}: F_{i} \rightarrow F_{i-1}$, where $\operatorname{im}\left(\varphi_{i}\right)=$ $\operatorname{Syz}\left(G_{i-1}\right)$ and $\mathcal{G}_{i} \subset R^{r_{i}}$ is a Gröbner" with "obtain $\varphi_{i+1}: F_{i+1} \rightarrow F_{i}$, where $\operatorname{im}\left(\varphi_{i+1}\right)=$ $\operatorname{Syz}\left(G_{i-1}\right)=\operatorname{ker}\left(\varphi_{i}\right)$ in F_{i} and $\mathcal{G}_{i} \subset F_{i}=R^{r_{i}}$ is a reduced Gröbner"
Page 260, lines 2 and 3 above display (2.5): Replace "the leading terms of the reduced Gröbner basis \mathcal{G}_{ℓ} " with "the reduced Gröbner basis \mathcal{G}_{ℓ} of $\operatorname{Syz}\left(G_{\ell-1}\right) \subset F_{\ell}$ is either empty or its leading terms"
Page 260, display (2.5): Add $\varphi_{\ell-1}$ above the second arrow and put a period at the end of the display.
Page 260, line after display (2.5): Replace "and the leading" with "When $\mathcal{G}_{\ell}=\emptyset, \operatorname{ker}\left(\varphi_{\ell}\right)=$ $\{0\}$ and φ_{ℓ} is injective. Thus we can extend (2.5) to a free resolution of length $\ell \leq n$ by adding a zero at the left. Otherwise, the leading"
Page 260, three lines below display (2.5): Replace " $\operatorname{Syz}\left(G_{\ell-1}\right)$ is a free module" with $" R^{t} / \operatorname{ker}\left(\varphi_{\ell}\right) \simeq \operatorname{im}\left(\varphi_{\ell}\right)=\operatorname{ker}\left(\varphi_{\ell-1}\right)$ is a free module"
Page 260, four lines below display (2.5): Replace "we can extend (2.5)" should be "we can replace F_{ℓ} with the free module $\operatorname{ker}\left(\varphi_{\ell-1}\right)$ and extend (2.5)"
Page 263, line 1: Replace "from (1.8)" with "from (1.7)"
Page 263, line 6: Replace "see (1.16)" with "(see (1.14))"
Page 264, Exercise 8: Add the following new part d:
d. Show that R^{t} / M is also a free module. Hint: Let $N \subset R^{t}$ be the free submodule generated by the standard basis vectors that are not leading terms of elements of \mathcal{G}. Use the division algorithm with respect to \mathcal{G} to show that the induced map $N \rightarrow R^{t} / M$ is an isomorphism.

Page 265, part a of Exericse 11: Replace "of the the" with "of the"
Page 265, part b of Exercise 11, line 2: Replace " $(-1) \operatorname{det}\left(A_{i}\right)$, where A_{i} " with " $(-1) \operatorname{det}\left(\mathcal{A}_{i}\right)$, where $\mathcal{A}_{i}{ }^{"}$
Page 265, part d of Exercise 11, line -1 : Replace " $=p B$ for some $B \in R^{m "}$ with " $=p C$ for some $C \in R^{m}$ "

Page 267, line 1 of (3.3) Proposition: Replace "be submodule" with "be a submodule"
Page 269, line 1 of Exercise 3: Replace "finitely generated" with "finitely generated graded"
Page 270, line 6: Replace with " $M=\left\langle y z-x w, y^{3}-x^{2} z, x z^{2}-y^{2} w, z^{3}-y w^{2}\right\rangle$ "
Page 270, line 9: Replace with " $R(-2) \oplus R(-3)^{3} \rightarrow R$ "
Page 275, line 2: Replace " $F_{\ell+2} \xrightarrow{\varphi_{\ell+1}^{1}} F_{\ell+1}$ " with " $F_{\ell+2} \xrightarrow{\varphi_{\ell+2}^{2}} F_{\ell+1}$ "
Page 275, line 7: Replace " $+c_{2} \varphi_{\ell-1}\left(u_{m}\right)$ " with " $+c_{t} \varphi_{\ell-1}\left(u_{t}\right)$ "
Page 275, line 9: Replace " $i=2, \ldots, m$ " with " $i=2, \ldots, t$ "
Page 279, line 2 of Exercise 14: Replace " $\psi: G_{\ell} \rightarrow G_{\ell-1}$ " with " $\psi_{\ell}: G_{\ell} \rightarrow G_{\ell-1}$ "
Page 279, lines 6-7 of Exercise 14: Replace " $A_{01}=\left(c_{2}, \ldots, c_{t}\right)$ as in (3.16), and $A_{10}=$ $\left(d_{2}, \ldots, d_{m}\right)^{T}$ " with " $A_{10}=\left(c_{2}, \ldots, c_{t}\right)^{T}$ as in (3.16), and $A_{01}=\left(d_{2}, \ldots, d_{m}\right)$ "
Page 279, line 10 of Exercise 14: Replace " $B_{\ell}=A_{00}-A_{01} A_{11}^{-1} A_{10}$ " with " $B_{\ell}=A_{11}-$ $A_{10} A_{00}^{-1} A_{01}$ "
Page 279, line 11 of Exercise 14: Replace "What's remarkable is that this formula is identical to" with "This formula is a slight variation of the formula in"

Page 289, line 3 of Definition (4.16): "to the minimal" should be "to be the minimal"
Page 290, line 12: Replace "for S / J to" with "for R / J to"
Page 293, line 3: Replace " $\tilde{c}=p_{1} q_{2}-p_{1} q_{2}$ " with " $\tilde{c}=p_{1} q_{2}-p_{2} q_{1}$ "
Page 293, line - 19: Replace $" \operatorname{GCD}\left(a_{1}, \ldots, a_{m}\right)=1 "$ with $" \operatorname{GCD}\left(a_{1}, \ldots, a_{m}, c\right)=1 "$
Page 297, part a of Exercise 12, line 3: Replace " R^{G} " with " S^{G} "
Page 297, line -3 : Replace " R " with " $S{ }^{G}$ "
Page 303, part d of Exercise 25: Replace "parts b, c and d" with "parts b and d"
Page 308, line before Exercise 4: Add a new sentence "We also regard Q as a face of itself."
Page 308, line following Exercise 4: Replace "Every face" with "Every proper face"
Page 314, line 3 of Exercise 1: Replace "You already did a special case of this in Exercise 2 of Chapter 3, $\S 2$ " with "This is a special case of Exercise 2 of Chapter 3, $\S 2$ "

Page 314, the last row of the matrix in display (2.4): Replace " $c_{0}-x$ " with " $c_{0}-z$ "
Page 314, part a of Exercise 2, line 4: Replace " $s t^{2}$ " with " $s{ }^{2} t$ "
Page 319, line 1 of Exercise 6: Replace "Then" with "Use the bracket notation introduced in Theorem (3.5) of Chapter 3, $\S 3$ to"

Page 325, display (3.9): Replace " $F\left(x_{1}, \ldots, x_{n}\right)$ " with " $F\left(x_{1}, \ldots, x_{N}\right)$ "
Page 325, line 1 of proof of Lemma (3.10): Replace " $m=\sum_{i=1}^{n} a_{i} e_{i} "$ with " $m=\sum_{i=1}^{n} b_{i} e_{i}$ "
Page 325, line 2 of Exercise 4: Replace "Exercise 3" with "Exercise 7 of $\S 1$ "
Page 327, line 9: In the statement of Theorem (3.13), replace " $\mathcal{A}=\left\{m_{1}, \ldots, m_{l}\right\} \subset \mathbb{Z}_{\geq 0}^{n}$ " with " $\mathcal{A}=\left\{m_{1}, \ldots, m_{l}\right\} \subset \mathbb{Z}^{n}$ "
Page 328, line 11: In two places, replace " x_{0}, \ldots, x_{N} " with " x_{1}, \ldots, x_{N} "
Page 331, part d of Exercise 11, line 2: Replace " x_{1}, \ldots, x_{n} " with " x_{1}, \ldots, x_{N} "
Page 331, part d of Exercise 11, line 3: Replace " x_{1}, \ldots, x_{n} " with " x_{1}, \ldots, x_{N} "
Page 334, line -11: Replace "which is the called" with "which is called"
Page 334, line -10 : Replace "If S is subset of" with "If S is a subset of"
Page 339, line 12: Replace "part b" with "part c"
Page 339, line 18: Replace "Exercise 5" with "Exercise 6"
Page 342, line 1: Replace " $\mu \cdot a_{Q}(\nu) \geq 0$ " with " $\mu \cdot a_{Q}(\nu) /\|\nu\| \geq 0$ "
Page 343, 7 lines below display (5.2): Replace "equivalent" with "equivalent to"
Page 352, part e of Exercise 4, line 1: Replace " $d \mapsto d / t$ " with " $d \mapsto d / t^{8}$ "
Page 359, line -7 : Replace "polyedral" with "polyhedral"
Page 359, line 4 of Definition (6.4): Replace "is a face" with "is either empty or a face"
Page 365, Figure 7.9: The figure is wrong. Here is the correct figure.

Page 373, line 3: Replace "Chapter 2" with "Chapter 3"

Page 416, part b of Exercise 4, line 6: Replace " $g_{3}=\left(2 x y^{2}+y^{3}, 0,0, y,-y, 0,-2 x-y\right)$ " with $" g_{3}=\left(2 x y^{2}+y^{3}, x^{2} y+2 x y^{2}+y^{3}, 0,0, y,-y, 0,-2 x-y\right)$ "
Page 417, part c of Exercise 5, last line: Replace "if $k \geq 3$ " with "if $k \geq 4$ "
Page 422, part d of Exercise 8: Replace " $M\left(\Delta^{\prime}, r\right)$ " with " $M(\bar{\Delta}, r)$ "
Page 423, line 7: Replace "expression (3.19)" with "expression (3.18)"
Page 425, Exercise 14, line 2: Replace "hereditary complex" with "hereditary simplicial complex"

Page 431, line -6: The left-hand side of the equation should be " $\left\{\underline{x^{2}}-y, \underline{y z}+x z-y^{2}\right\}$ "
Page 433, line 1: Replace "that w " with "that w"
Page 438, line -18: Replace "is the positive orthant" with "in the positive orthant"
Page 440, third display: Replace " $\left\langle\operatorname{in}_{\mathbf{w}_{\text {new }}}\left(G_{\text {old }}\right)\right\rangle "$ with " $\left\langle\mathrm{LT}_{\rangle_{\text {new }}}\left(\left\langle\mathrm{in}_{\mathbf{w}_{\text {new }}}\left(G_{\text {old }}\right)\right\rangle\right)\right\rangle "$
Page 440, line -9: In two places, replace " $q_{j, g}$ " with " $p_{j, g}$ "
Page 444, line 10: " $\mathbf{w}_{t} \cdot v_{1}=6$ " should be " $\mathbf{w}_{t} \cdot v_{1}=11$ "
Page 444, line 14: " $v_{2}=(0,-,-1)$ " should be " $v_{3}=(0,1,-1)$ "
Page 473, line -3 : Replace " $\left\langle x_{1}^{n_{1}-1}-1, \ldots, x_{m}^{n_{m}-1}-1\right\rangle$ " with " $\left\langle x_{1}^{n_{1}}-1, \ldots, x_{m}^{n_{m}}-1\right\rangle$ "
Page 474, line 6: Replace " $\left\langle x_{1}^{n_{1}-1}-1, \ldots, x_{m}^{n_{m}-1}-1\right\rangle$ " with " $\left\langle x_{1}^{n_{1}}-1, \ldots, x_{m}^{n_{m}}-1\right\rangle$ "
Page 496, line 7: Replace "of elements" with "of nonzero elements"
Page 496, line -3 : Replace "are verified" with "are satisfied"
Page 502, line 10: Replace " $x_{1} x_{2}^{4 "}$ with " $x_{1} x_{2}^{3 "}$
Page 553, first column, line -14: Replace "Faugère, C." with "Faugère, J.-C."

