The Statistical Sleuth in R:
 Chapter 12

Kate Aloisio Ruobing Zhang Nicholas J. Horton*

September 28, 2013

Contents

1 Introduction 1
2 State Average SAT Scores 2
2.1 Summary statistics 2
2.2 Dealing with Many Explanatory Variables 3
2.3 Sequential Variable Selection 9
2.4 Model Selection Among All Subsets 11
2.5 Contribution of Expend 13
3 Sex Discrimination in Employment 14
3.1 Summary Statistics 14
3.2 Model Selection 15
3.3 Evaluating the Sex Effect 17

1 Introduction

This document is intended to help describe how to undertake analyses introduced as examples in the Second Edition of the Statistical Sleuth (2002) by Fred Ramsey and Dan Schafer. More information about the book can be found at http://www.proaxis.com/~panorama/home.htm. This file as well as the associated knitr reproducible analysis source file can be found at http://www.amherst. edu/~nhorton/sleuth.

This work leverages initiatives undertaken by Project MOSAIC (http://www.mosaic-web. org), an NSF-funded effort to improve the teaching of statistics, calculus, science and computing in the undergraduate curriculum. In particular, we utilize the mosaic package, which was written to simplify the use of R for introductory statistics courses. A short summary of the R needed to teach introductory statistics can be found in the mosaic package vignette (http://cran.r-project. org/web/packages/mosaic/vignettes/MinimalR.pdf).

To use a package within R, it must be installed (one time), and loaded (each session). The package can be installed using the following command:

[^0]```
> install.packages("mosaic") # note the quotation marks
```

Once this is installed, it can be loaded by running the command:

```
> require(mosaic)
```

This needs to be done once per session.
In addition the data files for the Sleuth case studies can be accessed by installing the Sleuth2 package.

```
> install.packages("Sleuth2") # note the quotation marks
> require(Sleuth2)
```

We also set some options to improve legibility of graphs and output.

```
> trellis.par.set(theme = col.mosaic()) # get a better color scheme for lattice
> options(digits = 4)
```

The specific goal of this document is to demonstrate how to calculate the quantities described in Chapter 12: Strategies for Variable Selection using R.

## 2 State Average SAT Scores

What variables are associated with state average SAT scores? This is the question addressed in case study 12.1 in the Sleuth.

### 2.1 Summary statistics

We begin by reading the data and summarizing the variables.

```
> summary(case1201)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline State & \multicolumn{2}{|r|}{SAT} & \multicolumn{3}{|c|}{Takers} & \multicolumn{2}{|r|}{Income} \\
\hline Length: 50 & & Min. & 90 & Min. & . 00 & Min. & : 208 \\
\hline Class : characte & & 1st Qu.: & 89 & 1st Qu.: & . 25 & 1st & Qu. : 262 \\
\hline Mode :characte & & Median & 66 & Median : 1 & . 00 & Medi & ian :295 \\
\hline & & Mean & 48 & Mean & . 22 & Mean & : 294 \\
\hline & & 3rd Qu.: & 98 & 3rd Qu.: & . 75 & 3rd & Qu. : 325 \\
\hline & & Max & & Max. & . 00 & Max & : 401 \\
\hline Years & & Public & & Expend & & Rank & \\
\hline Min. \(: 14.4\) & Min & :44.8 & Min. & :13.8 & Min. & & 69.8 \\
\hline 1st Qu.:15.9 & 1st & Qu.:76.9 & & Qu.:19.6 & & Qu. 7 & 74.0 \\
\hline Median :16.4 & Med & ian : 80.8 & Medi & ian :21.6 & Medi & an :8 & 80.8 \\
\hline Mean :16.2 & Mean & n \(: 81.2\) & Mean & n :23.0 & Mean & : 8 & 80.0 \\
\hline 3rd Qu.:16.8 & 3rd & Qu.:88.2 & 3rd & Qu.:26.4 & 3 rd & Qu. : 8 & 85.8 \\
\hline Max. :17.4 & & :97.0 & Max. & :50.1 & & :9 & 90.6 \\
\hline
\end{tabular}
```

The data are shown on page 340 (display 12.1). A total of 50 state average SAT scores are included in this data.

### 2.2 Dealing with Many Explanatory Variables

The following graph is presented as Display 12.4, page 348.

```
> pairs(~Takers + Rank + Years + Income + Public + Expend + SAT, data = case1201)
```



We can get a fancier graph using following code:

```
> panel.hist = function(x, ...) {
+ usr = par("usr")
+ on.exit(par(usr))
+ par(usr = c(usr[1:2], 0, 1.5))
+ h = hist(x, plot = FALSE)
+ breaks = h$breaks
+ nB = length(breaks)
+ y = h$counts
+ y = y/max(y)
+ rect(breaks[-nB], 0, breaks[-1], y, col = "cyan", ...)
+ }
>
> panel.lm = function(x, y, col = par("col"), bg = NA, pch = par("pch"), cex = 1,
+ col.lm = "red", ...) {
+ points(x, y, pch = pch, col = col, bg = bg, cex = cex)
```

```
ok = is.finite(x) & is.finite(y)
if (any(ok))
 abline(lm(y[ok] ~ x[ok]))
```

+ \}
> pairs (~Takers + Rank + Years + Income + Public + Expend + SAT, lower.panel = panel.smooth,
+ diag.panel = panel.hist, upper.panel = panel.lm, data = case1201)


An alternative graph can be generated using the car package.

```
> require(car)
> scatterplotMatrix(~ Takers+Rank+Years+Income+Public+Expend+SAT,
+ diagonal="histogram", smooth=FALSE, data=case1201)
```



Based on the scatterplot, we choose the logarithm of percentage of SAT takers and median class rank to fit our first model (page 349):

```
> lm1 = lm(SAT ~ Rank + log(Takers), data = case1201)
> summary(lm1)
Call:
lm(formula = SAT ~ Rank + log(Takers), data = case1201)
```

Residuals:

| Min | 1Q Median | 3Q | Max |
| ---: | ---: | ---: | ---: |
| -94.46 | -17.31 | 5.32 | 22.82 |
| 48.47 |  |  |  |

Coefficients:

|  | Estimate | Std. Error t value $\operatorname{Pr}(>\|\mathrm{t}\|)$ |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
| (Intercept) | 882.08 | 224.13 | 3.94 | 0.00027 | $* * *$ |
| Rank | 2.40 | 2.33 | 1.03 | 0.30898 |  |
| log(Takers) | -45.19 | 14.06 | -3.21 | 0.00236 | $* *$ |

```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 31.1 on 47 degrees of freedom
Multiple R-squared: 0.815,Adjusted R-squared: 0.807
F-statistic: 103 on 2 and 47 DF, p-value: <2e-16
```

From the regression output, we observe that these two variables can explain $81.5 \%$ of the variation.

Next we fit a linear regression model using all variables and create the partial residual plot presented on page 349 as Display 12.5:

```
> lm2 = lm(SAT ~ log2(Takers) + Income + Years + Public + Expend + Rank, data = case1201)
> summary(lm2)
Call:
lm(formula = SAT ~ log2(Takers) + Income + Years + Public + Expend +
 Rank, data = case1201)
Residuals:
\begin{tabular}{rrrrr}
Min & 1Q & Median & 3Q & Max \\
-61.11 & -8.60 & 2.86 & 14.77 & 53.40
\end{tabular}
Coefficients:
\begin{tabular}{lrrrr}
& \multicolumn{2}{l}{ Estimate } & Std. Error & t value \\
\(\operatorname{Pr}(>|t|)\) \\
(Intercept) & 407.5399 & 282.7633 & 1.44 & 0.1567 \\
log2(Takers) & -26.6429 & 11.0572 & -2.41 & \(0.0203 *\) \\
Income & -0.0359 & 0.1301 & -0.28 & 0.7841 \\
Years & 17.2181 & 6.3201 & 2.72 & \(0.0093 * *\) \\
Public & -0.1130 & 0.5624 & -0.20 & 0.8417 \\
Expend & 2.5669 & 0.8064 & 3.18 & \(0.0027 * *\) \\
Rank & 4.1143 & 2.5017 & 1.64 & 0.1073
\end{tabular}

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 24.9 on 43 degrees of freedom
Multiple R-squared: 0.892,Adjusted R-squared: 0.877
F-statistic: 59.2 on 6 and 43 DF, p-value: <2e-16
> plot(lm2, which = 4)
```



According to the Cook's distance plot, obs 29 (Alaska) seems to be an influential outlier. We may consider removing this observation from the dataset.

```
> case1201r = case1201[-c(29),]
> lm3 = lm(SAT ~ log2(Takers) + Income + Years + Public + Expend + Rank, data = case1201r)
> anova(lm3)
Analysis of Variance Table
Response: SAT
 Df Sum Sq Mean Sq F value Pr(>F)
log2(Takers) 1 199007 199007 390.63 < 2e-16 ***
Income 1 7 7 1 7 % 7 % 1.54 0.2214
Years 1 5 5910 5910 11.60 0.0015 **
Public 1 5086 5086 9.98 0.0029 **
Expend 1 10513 10513 20.64 4.6e-05 ***
Rank 1 2679 2679 5.26 0.0269 *
Residuals 42 21397 509

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> crPlots(lm2, term = ~Expend) # with Alaska
> crPlots(lm3, term = ~Expend) # without Alaska
```

Statistical Sleuth in R: Chapter 12


Statistical Sleuth in R: Chapter 12


The difference between these two slopes indicates that Alaska is an influential observation. We decide to remove it from the original dataset.

### 2.3 Sequential Variable Selection

The book uses F-statistics as the criterion and present the procedures of forward selection and backward elimination on page 351-353. The forward selection requires fitting 16 of 64 possible models. The final model uses Expenditure and $\log$ (Takers) to predict SAT. The backward elimination method needs to fit 3 models, and the final model uses Year, Expenditure, Rank and $\log$ (Takers) to predict SAT.

To the best of our knowledge, there is no built-in mechanism to undertake the procedure using the F statistic as criterion. Instead, we demonstrate how to use AIC (another criterion) and select the final model. Note that we choose $\log ($ Taker $)$ as our preliminary predictor for forward selection, because it has the largest F -value when we fit lm 3 .

```
> # Forward Selection
> lm4 = lm(SAT ~ log2(Takers), data=case1201r)
> stepAIC(lm4, scope=list(upper=lm3, lower=~1), direction="forward",
+ trace=FALSE)$anova
```

```
Stepwise Model Path
Analysis of Deviance Table
Initial Model:
SAT ~ log2(Takers)
Final Model:
SAT ~ log2(Takers) + Expend + Years + Rank
 Step Df Deviance Resid. Df Resid. Dev AIC
1 47 46369 339.8
2 + Expend 1 20523 46 25846 313.1
3 + Years 1 1248 45 24598 312.7
4 + Rank 1 2676 44 21922 309.1
> # Backward Elimination
> stepAIC(lm3, direction="backward", trace=FALSE)$anova
Stepwise Model Path
Analysis of Deviance Table
Initial Model:
SAT ~ log2(Takers) + Income + Years + Public + Expend + Rank
Final Model:
SAT ~ log2(Takers) + Years + Expend + Rank
 Step Df Deviance Resid. Df Resid. Dev AIC
1 42 21397 311.9
2 Public 1 20.0 43 21417 309.9
3- Income 1 505.4 44 21922 309.1
> # Stepwise Regression
> stepAIC(lm3, direction="both", trace=FALSE)$anova
Stepwise Model Path
Analysis of Deviance Table
Initial Model:
SAT ~ log2(Takers) + Income + Years + Public + Expend + Rank
Final Model:
SAT ~ log2(Takers) + Years + Expend + Rank
```

| $\quad$ Step Df | Deviance Resid. Df | Resid. Dev | AIC |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
| 1 |  |  | 42 | 21397 | 311.9 |
| 2 - Public | 1 | 20.0 | 43 | 21417 | 309.9 |
| 3 - Income |  |  |  |  |  |
| 1 | 505.4 | 44 | 21922 | 309.1 |  |

The final model includes $\log$ (Takers), Expenditure, Years and Rank.

```
> lm5 = lm(SAT ~ log2(Takers) + Expend + Years + Rank, data = case1201r)
> summary(lm5)
Call:
lm(formula = SAT ~ log2(Takers) + Expend + Years + Rank, data = case1201r)
Residuals:
\begin{tabular}{rrrrr}
Min & 1Q Median & 3Q & Max \\
-52.30 & -9.92 & 0.60 & 11.88 & 59.20
\end{tabular}
Coefficients:
\begin{tabular}{lrrrrl}
& Estimate & Std. Error t value & \(\operatorname{Pr}(>|\mathrm{t}|)\) \\
(Intercept) & 399.115 & 232.372 & 1.72 & 0.0929. \\
log2 (Takers) & -26.409 & 8.259 & -3.20 & 0.0026 & \(* *\) \\
Expend & 3.996 & 0.764 & 5.23 & \(4.5 e^{-06}\) & \(* * *\) \\
Years & 13.147 & 5.478 & 2.40 & 0.0207 & \(*\) \\
Rank & 4.400 & 1.899 & 2.32 & \(0.0252 *\)
\end{tabular}
--
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 22.3 on 44 degrees of freedom
Multiple R-squared: 0.911,Adjusted R-squared: 0.903
F-statistic: 112 on 4 and 44 DF, p-value: <2e-16
```

The final model can explain $91.1 \%$ percent or the variation of SAT. All of the explanatory variables are statistically significant at the $\alpha=.05$ level.

### 2.4 Model Selection Among All Subsets

The Cp-statistic can be an useful criterion to select model among all subsets. We'll give an example about how to calculate this statistic for one model, which includes $\log$ (Takers), Expenditure, Years and Rank.

```
> sigma5 = summary(lm5)$sigma^2 # sigma-squared of chosen model
> sigma3 = summary(lm3)$sigma^2 # sigma-squared of full model
> n = 49 # sample size
> p = 4 + 1 # number of coefficients in model
```

Statistical Sleuth in R: Chapter 12

```
> Cp = (n - p) * sigma5/sigma3 + (2 * p - n)
> Cp
```

[1] 4.031
The Cp statistic for this fitting model is 4.0312 .
Alternatively, the Cp statistic can be calculated using the following command:

```
> require(leaps)
> explanatory = with(case1201r, cbind(log(Takers), Income, Years, Public, Expend,
+ Rank))
> with(case1201r, leaps(explanatory, SAT, method = "Cp"))$which[27,]
 1 2 2 3 4
TRUE FALSE TRUE FALSE TRUE TRUE
```

This means that the 27th fitting model includes $\log$ (Takers), Years and Expend.

```
> with(case1201r, leaps(explanatory, SAT, method = "Cp"))$Cp[27]
```

[1] 4.031
The Cp statistic for this model is 4.0312 . This will be the "tyer" point on Display 12.9, page 357.

We use the following code to generate the graph presented as Display 12.14 on page 364 .

```
> plot(lm5, which = 1)
```

Residuals vs Fitted


From the scatterplot, we see that obs 28 (New Hampshire) has the largest residual, while obs 50 (Sorth Carolina) has the smallest.

### 2.5 Contribution of Expend

Display 12.13 (page 363) shows the contribution of Expend to the model.
$>\operatorname{lm} 7=\operatorname{lm}(S A T \sim$ Expend, data $=$ case1201r)
> summary (lm7)

Call:
$\operatorname{lm}($ formula $=$ SAT $\sim$ Expend, data $=$ case1201r $)$

Residuals:

| Min | 1Q | Median | 3Q | Max |
| ---: | ---: | ---: | ---: | ---: |
| -162.5 | -57.7 | 17.0 | 46.6 | 141.4 |

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|\mathrm{t}|)$

| (Intercept) | 961.724 | 49.888 | 19.28 | $<2 \mathrm{e}-16 * * *$ |
| :--- | ---: | ---: | ---: | ---: |
| Expend | -0.592 | 2.178 | -0.27 | 0.79 |

---
Signif. codes: $0{ }^{\prime} * * * ' 0.001{ }^{\prime} * * ' 0.01 '^{\prime \prime} 0.05 '^{\prime} 0.1 '^{\prime} 1$

Residual standard error: 72.2 on 47 degrees of freedom Multiple R-squared: 0.00157,Adjusted R-squared: -0.0197 F-statistic: 0.074 on 1 and 47 DF , p-value: 0.787
> lm8 $=\operatorname{lm}(S A T ~ ~$ Income + Expend, data $=$ case1201r)
> summary(lm8)

Call:
lm(formula $=$ SAT $\sim$ Income + Expend, data $=$ case1201r)

Residuals:
Min 1Q Median 3Q Max
$\begin{array}{lllll}-91.15 & -38.41 & -2.58 & 27.29 & 159.52\end{array}$

Coefficients:
Estimate Std. Error $t$ value $\operatorname{Pr}(>|t|)$

| (Intercept) | 604.682 | 73.209 | 8.26 | $1.2 \mathrm{e}-10$ | $* * *$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Income | 1.127 | 0.196 | 5.73 | $7.2 \mathrm{e}-07$ | $* * *$ |
| Expend | 0.672 | 1.695 | 0.40 | 0.69 |  |

---
Signif. codes: $0{ }^{\prime} * * * ' 0.001{ }^{\prime} * * ' 0.01 *^{\prime \prime} 0.05 '^{\prime} 0.1 '^{\prime} 1$

Residual standard error: 55.7 on 46 degrees of freedom

Statistical Sleuth in R: Chapter 12

Multiple R-squared: 0.418,Adjusted R-squared: 0.392
F-statistic: 16.5 on 2 and 46 DF, p-value: $3.95 e-06$

## 3 Sex Discrimination in Employment

Do females receive lower starting salaries than similarly qualified and similarly experience males and did females receive smaller pay increases than males? These are the questions explored in case 12.2 in the Sleuth.

### 3.1 Summary Statistics

We begin by summarizing the data.

```
> summary(case1202)
\begin{tabular}{|c|c|c|c|c|}
\hline Bsal & Sal77 & Sex & Senior & Age \\
\hline Min. :3900 & Min. : 7860 & Female:61 & Min. \(: 65.0\) & Min. 280 \\
\hline 1st Qu.:4980 & 1st Qu.: 9000 & Male :32 & 1st Qu.:74.0 & 1st Qu.:349 \\
\hline Median :5400 & Median : 10020 & & Median :84.0 & Median : 468 \\
\hline Mean :5420 & Mean : 10393 & & Mean : 82.3 & Mean : 474 \\
\hline 3rd Qu.:6000 & 3rd Qu. : 11220 & & 3rd Qu.:90.0 & 3rd Qu.:590 \\
\hline Max. :8100 & Max. : 16320 & & Max. 988.0 & Max. :77 \\
\hline
\end{tabular}
Min. : 8.0 Min. : 0.0
1st Qu.:12.0 1st Qu.: 35.5
Median :12.0 Median : 70.0
Mean :12.5 Mean :100.9
3rd Qu.:15.0 3rd Qu.:144.0
Max. :16.0 Max. :381.0
```

The data is shown on page 343-344 as display 12.3. A total of 93 employee salaries are included: 61 females and 32 males.

Next we present a full graphical display for the variables within the dataset and the log of the beginning salary variable.

```
> pairs(~}\mp@subsup{~}{~}{~
+ diag.panel = panel.hist, upper.panel = panel.lm, data = case1202)
```



Through these scatterplots it appears that beginning salary should be on the log scale and the starting model without the effects of gender will be a saturated second-order model with 14 variables including Seniority, Age, Education, Experience, as main effects, quadratic terms, and their full interactions.

### 3.2 Model Selection

To determine the best subset of these variables we first compared Cp statistics. Display 12.11 shows the Cp statistics for models that meet 'good practice' and have small Cp values. We will demonstrate how to calculate the Cp statistics for the two models with the lowest Cp statistics discussed in "Identifying Good Subset Models" on pages 359-360.

The first model includes Seniority, Age, Education, Experience, and the interactions between Seniority and Education, Age and Education, and Age and Experience. The second model includes Seniority, Age, Education, Experience, and the interactions between Age and Education and Age and Experience.

```
> require(leaps)
> explanatory1 = with(case1202, cbind(Senior, Age, Educ, Exper, Senior * Educ,
+ Age * Educ, Age * Exper))
```

```
> # First model (saexnck)
> with(case1202, leaps(explanatory1, log(Bsal), method = "Cp"))$which[55,]
 1
TRUE TRUE TRUE TRUE TRUE TRUE TRUE
> with(case1202, leaps(explanatory1, log(Bsal), method = "Cp"))$Cp[55]
[1] 8
> # second model (saexck)
> with(case1202, leaps(explanatory1, log(Bsal), method = "Cp"))$which[49,]
 1
TRUE TRUE TRUE TRUE FALSE TRUE TRUE
> with(case1202, leaps(explanatory1, log(Bsal), method = "Cp"))$Cp[49]
[1] 8.124
```

This first model has a Cp statistic of 8. Compared to the second model with a Cp statistic of 8.12 .

We can also compare models using the BIC, we will next compare the second model with a thrid model defined as saexyc $=$ Seniority + Age + Education + Experience + Experience $^{2}+$ Age*Education.

```
> BIC(lm(log(Bsal) ~ Senior + Age + Educ + Exper + Age * Educ + Age * Exper, data = case1202))
[1] -140.2
> BIC(lm(log(Bsal) ~ Senior + Age + Educ + Exper + (Exper)^2 + Age * Educ, data = case1202))
[1] -131.3
```

Thus our final model is the second model, summarized below.

```
> lm1 = lm(log(Bsal) ~ Senior + Age + Educ + Exper + Age * Educ + Age * Exper,
+ data = case1202)
> summary(lm1)
Call:
lm(formula = log(Bsal) ~ Senior + Age + Educ + Exper + Age *
 Educ + Age * Exper, data = case1202)
Residuals:
 Min 1Q Median 3Q Max
```

```
-0.2817 -0.0476 0.0132 0.0605 0.2341
Coefficients
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.89e+00 2.45e-01 32.21 < 2e-16 ***
Senior -3.15e-03 1.04e-03 -3.04 0.00313 **
Age 1.24e-03 4.02e-04 3.09 0.00270 **
Educ 7.20e-02 1.67e-02 4.31 4.3e-05 ***
Exper 2.86e-03 6.67e-04 4.28 4.8e-05 ***
Age:Educ -1.02e-04 3.15e-05 -3.25 0.00166 **
Age:Exper -3.72e-06 1.02e-06 -3.65 0.00044 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.0974 on 86 degrees of freedom
Multiple R-squared: 0.469,Adjusted R-squared: 0.431
F-statistic: 12.6 on 6 and 86 DF, p-value: 3.58e-10
```


### 3.3 Evaluating the Sex Effect

After selecting the model saexck $=$ Seniority + Age + Education + Experience + Age*Education + Age*Experience we can add the sex indicator variable as summarized on page 360 .

```
> lm2 = lm(log(Bsal) ~ Senior + Age + Educ + Exper + Age * Educ + Age * Exper +
+ Sex, data = case1202)
> summary(lm2)
```

Call:

Educ + Age * Exper + Sex, data = case1202)
Residuals:
Min 1Q Median 3Q Max
-0.17822 -0.05197-0.00203 0.05301 0.20466
Coefficients:

|  |  | S |  | $\operatorname{Pr}(>\|t\|)$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| (Intercept) | $8.16 \mathrm{e}+00$ | $2.21 \mathrm{e}-01$ | 36.99 | < 2e-16 | *** |
| Senior | -3.48e-03 | $9.09 \mathrm{e}-04$ | -3.83 | 0.00024 |  |
| Age | $9.15 \mathrm{e}-04$ | 3.57 e | 2.56 | 0.01218 | * |
| Educ | $4.23 \mathrm{e}-02$ | $1.57 \mathrm{e}-02$ | 2.70 | 0.00836 |  |
| Exper | $2.18 \mathrm{e}-03$ | $5.98 \mathrm{e}-04$ | 3.65 | 0.00045 |  |
| SexMale | $1.20 \mathrm{e}-01$ | $2.29 \mathrm{e}-02$ | 5.22 | $1.3 \mathrm{e}-06$ | *** |
| Age: Educ | -5.46e-05 | $2.91 \mathrm{e}-05$ | -1.88 | 0.0640 |  |

```
Age:Exper -3.23e-06 8.96e-07 -3.61 0.00052 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.0853 on 85 degrees of freedom
Multiple R-squared: 0.598,Adjusted R-squared: 0.564
F-statistic: }18\mathrm{ on }7\mathrm{ and 85 DF, p-value: 1.79e-14
```

In contrast to the book, our reference group is Male, therefore the median male salary is estimated to be 1.13 times as large as the median female salary, adjusted for the other variables.


[^0]:    *Department of Mathematics, Amherst College, nhorton@amherst.edu

