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We have developed a quantitative theory of resonant tunneling of magnetic flux between discrete macro-
scopically distinct quantum states in superconducting quantum interference device systems. The theory is
based on the standard density-matrix approach. Its elements include the discussion of the two different relax-
ation mechanisms that exist for the double-well potential, and description of the “photon-assisted” tunneling
driven by external rf radiation. It is shown that in the case of coherent flux dynamics, rf radiation should lead
to splitting of the peaks of resonant flux tunneling, indicating that the resonant tunneling is a convenient tool
for studying macroscopic quantum coherence of flux.

I. INTRODUCTION “photon-assisted” macroscopic resonant flux tunneling un-
der rf irradiation. We show that in contrast to tunneling un-
Bose condensates of Cooper pairs in superconductoder stationary-bias conditions, the peaks of the photon-
have a remakable ability to populate a single quantum statassisted tunneling depend qualitatively on the strength of
with a macroscopically large number of particles. This prop-decoherence in the flux dynamics. In the case of coherent
erty of the Cooper pair condensates leads to macroscopfé!x dynamics, the resonant peaks of the photon-assisted tun-
quantum effects in the dynamics of Josephson junctions, i.eNeling are split in two. The splitting reflects the coherent
makes it possible for a Josephson junction to behave |arge|l3}ybr|d|zat|on of the macroscopic flux states in _the_two We_lls
as a pure quantum state of a simple quantum mechanic8f the SQUID potential and is suppressed with increasing
system while still containing macroscopically large numberate of decoherence. Very recently, such a splitting of the
of Cooper pairs. Due to the strongly nonlinear character ofésonant fluxétunnelmg peaks has been observed
the Josephson dynamics even in the classical regime, macrgXPerimentally’? demonstrating the quantum coherence of
scopic quantum effects can be quite nontrivial. They havéhe macroscopically distinct flux stat€s™ The paper is or-
been known for the past twenty years—see reviews in Ref. 1ganized as follows. In Sec. Il we derive the evolution equa-
and are continuing to attract considerable intefekfis in-  tONs for the denS|_ty matrix descr|b|_qg the resonant flux tun-
terest is to a large extent stimulated by the challenge to oupeling under stationary-bias conditions, and introduce the
understanding of the foundations of the quantum theory pretV0 relaxation mechanisms for tunneling dynamics. Using
sented by direct manifestations of quantum mechanics at tHf€se equations, we calculate the rate of flux tunneling in
macroscopic level® Another recent motivation for studying Sec. lll. In Sec. IV, we exFend the res_ults of Secs. Il and Ill
quantum effect in Josephson dynamics is provided by pod® the case of photon-assisted tunneling.
sible applications to quantum computatfom.
The most advanced macroscopic quantum effect observed
experimentally up to now is resonant tunneling between IIl. EQUATIONS FOR THE DENSITY MATRIX

quantized energy levels in the adjacent wells of the Joseph- T4 derive equations for the density matrix in the regime
son potentiat”**The aim of this work is to develop a theory of resonant tunneling of magnetic fiuk we consider the

of this phenomenon in superconducting quantum interfersiandard model of the phase dynamics in SQUID’s. The
ence devicgSQUID) systems, where the potential contains compination of the magnetic energy of the SQUID loop bi-
two wells, each with a different value of the average mag-sed with an external flux and the Josephson coupling energy
netic flux. We consider the regime of weak energy dissipayt tne SQUID junctiongfor details, see, e.g., Ref. Rpro-

tion important for studying coherent effects in resonant tung,ces the double-well potentidl(®) for & evolution
neling. This regime has not been discussed appropriately ifshown schematically in Fig. 1 belowThe main part of the

the existing treatments of resonant tunneling in double-wellygmiitonian governing the flux dynamics consists of the po-

potentials*~** or multiwell potentials corresponding to the yentia| (@) and the charging energy of the junction capaci-
current-biased Josephson junctioh$® The most essential i5ncec:

new feature of our approach is an account of the two types of

relaxation mechanisms, intrawell and interwell, that exist in

the system. The two relaxation mechanisms are very differ- Q?

ent in their dependence on the parameters of the SQUID Ho=55+U(®). 1)

potential, and lead to different shapes of the resonant tunnel-

ing peaks. Differences in relaxation mechanisms also make

macroscopic resonant tunneling of flux different from theThe chargeQ on the junction capacitance and the fldx

otherwise very similar “mesoscopic” resonant tunneling be-satisfy standard commutation relatior®,Q]=i#.

tween charge states of small Josephson junctidfisand The two wells of the potentidll (®) have discrete energy

electron states in quantum ddts?* statese;, with characteristic energy separation on the order
Another new element of this work is the discussion of theof w;, wherej=1,2 is the well indexw; are the oscillation
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U(®) do wG(w)ei“”

T 1_e—w/T !

(L (D1 g(t+ T))Zf 4

where the angle brackets denote averaging over the equilib-
D —A2 2 rium density matrix of the environment, ar@(w) is the
\/ [1‘ dissipative part of the environment conductance. Equation
2

(4) is sufficient to characterize completely the effects of the
weak energy dissipation considered in this work. For arbi-
trary dissipation strength, one can use the Caldeira-Leggett
modef® to express explicitly the environment Hamiltonian
P and the current operatdr in terms of a set of harmonic
FIG. 1. Schematic di f th i t tunneSCIALOrS.
. . L. Sthemalic diagram of the macroscopic resonant WNNE- 1,0 araction(3) induces both “vertical” transitions
ing of flux ® in the double-well potential () at low tempera- . . ) g
. . " ithin each well and direct interwell transitions. In terms of
tures under stationary-bias conditions. The flux tunnels out 01}3/] two-state d . ith the Hamiltoni&®), the latt
ground statg1) in the left well coupled with the amplitude A/2 € wo-s 3 € )r/]namlcds }NI. ef haml Oml. » (e ?lﬁ;
to the resonant stat@) in the right well, where it decays with the corresponad to the modu atlon.o the tunne Ing amp it e
rateT, into the lower states in this well. by the environment. The matrix elements of this type of in-
terwell transitions are, however, smaller by a factoddb,
frequencies around the potential minima, amet0,1,..., than those of the intrawell transitions. The small matrix ele-

numbers the states within each well. The two frequeneies Ments can be neglected under the conditions of resonance,
have the same order of magnitudg~ w,=w,. Extern:J:\I when the flux tunneling between the two wells is dominated

magnetic flux controls the energy difference between th the stronger resonant processes. In this approximation, we
states in opposite wells. Away from the resonance condi¢@n omit the terms in the flux operator in the interactign
tions, when all the energies;, are separated by large energy that are nondiagonal in the well indgx

gaps of ordew,,, the stategjn) are localized within thgth

well, and the gmphtude of the wave functiotg,(®) in th.e b= E CIDS)n,Ijn)(jn’l. (5)
opposite well is very small. However, when the energies of i’

the two states1)=|1n,;) and |2)=|2n,) are close,|s|

<wp, Whereszslnl—san, these states become strongly Heredbff)n, are the matrix elements @b in the |jn) basis.

coupled, and the wave functions spread over the both wellshe perturbation3) with the flux operator(5) has two ef-
As shown in the Appendix, strong coupling of the statesfects on the dynamics of the sta{ds2). The first is fluctua-
|1,2) at resonance can be described by the tunneling ampliions of the energy difference, which induce transitions
tude A, and the Hamiltoniaril) reduces to the regular two- between these states and lead to the loss of mutual coherence
state form in the basis of these states: between them. The part of thie operaton(5) responsible for
these fluctuations can be written &b (|1)(1|—|2)(2|),
1 where 6@ is half of the difference between the average flux
H°:§[8(|1><1|_|2><2|)_A(|1><2|+|2><1|)]’ ) values in the stated) and|2). The remaining terms in Eq.
(5) induce intrawell transitions from the statds and|2) to
A=(w,w,)Y?D/ 7, the other states in the corresponding wells.
. ) For weak dissipation both effects can be described quan-
whereD is the quantum mechanical transparency of the bargatively by the standard density matrix technique—see, e.g.,
rier separating the wells. Ref. 26. The description starts from the equation for the evo-

Without perturbations, the two-state dynamics describegion of the density matriy, obtained treating the coupling
by Eg. (2) is decoupled from the other states of the Hamil-y, (3) in second-order perturbation theory:

tonian (1). The most important perturbation creating such

coupling is the energy dissipation that induces transitions ¢

between the state4,2) and other statelgn). In the relevant p(t)= —i[HO,p]—f dr([V(t),[V(7),p(D]]). (6)
temperature range below superconducting energy gap of the

junction electrodes, the quasiparticle tunneling is suppressqgthe environment has a large cutoff frequenays s, A, the

and the main source of energy dissipation is the eIeCtrOm"j‘QHensity matrix evolves slowly on the time scale of variations

netic environment of the system. Under the assumption th " L
. . , .. 0f V(t), and we can make the Markov approximat
the electromagnetic modes of the environment are in equilib- () PP lotr)

rium at temperaturd@, and are well described by linear elec- =p(t) in the last term of Eq(6). The condition of weak

. . . dissipation also allows us to keep only the dissipative terms
trodynamics, the interaction betyveen the filband the heat in Eq. (6) that do not oscillate in time with frequencies of the
bath of these modes can be written as

main HamiltonianH, since only these terms lead to effects
V=—1®. ?) that accumulat_e- \_Nith_ time. Using these approxim_ations to
evaluate the dissipative part of the E®), we obtain the
Herel; is the fluctuating current created in the SQUID loop final equation for the density matrix in the basis of resonant
by the environment, with the correlation function given by states|1,2) relevant for the transfer of flux between the
the fluctuation-dissipation theorem: wells:
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p=—i[Ho,p]+T[pl+1p]. ) dynamics. The mterwgll relaxatiop p] .W|Il.generally. only
be stronger than the intrawell relaxation if the environment
The termI’ in this equation describes the effect of the in- has relatively low cutoff frequency < w,.

trawell transitions from the statés) and|2):

_ I'1pa1, (I'1+T2)p1al2

AV T1+T ) pol2 r -8 In this section, we calculate the rate of the resonant tun-
(T'1+12)p2e/2, 2P22 . . N

o neling between the wells in the situation when the external

At temperatures smaller than energy separation in the wellgjux through the SQUID loop does not contain an ac compo-

the total decay ratd’; in Eq. (8) of the statelj) into the  nent, and the energy dissipation drives the initial flux state in

Ill. STATIONARY BIAS

states with lower energy in the same well is the left well towards equilibrium. At low temperaturds
. <w, the flux stays initially in the ground state of the left
2|q’$11,)nj|2 well and then tunnels into the right well out of this stétéy.
U= 2 —7 (en=2n)Glen —en). 1). In this case, the relaxation raf&, obviously vanishes.

! We begin by considering the situation with only the intrawell

The second dissipation term[p] in Eq. (7) describes relaxation present. Equatidid) can then be written in matrix

transitions and decoherence within thk), |2) subspace, elements as
and has a simple form in the basis of energy eigenstates of - <
the two-state HamiltoniafR): p11=AIMp1a, poo=—AlMp1,— 21 py,
ol 11— vl N Yat Yu ; p1o=—(ie+T)p1o+ (1A12)(po—p1), (10
u' 11 d' 22, Y 2 12

U. with T',/2=T in this section.
vat+ Yu After transformation to the real and imaginary parts of the
vt T) Fo1,  Ydl22= Yuln off-diagonal matrix elemenp;, and the sum/differencp;;
(9) * p,, Of the diagonal elements of the density matrix, Egs.
(10) can be solved directly with the initial condition that the
flux is in the left well at timet=0, p;,(0)=1:

ypl=—-UT

Here r is the density matrix in the eigenstate basis:
=UpUT, andU is the rotation matrix from this basis to the

flux basis|1), |2): 1 eIt 2
(=5 (I +w?)|| 1+
p

U=[(1— /)"0, +(1+£/Q) 20, ]1\2, T2 p242 r
where thes’s denote Pauli matrices, arfd=(g?+ A?)*2 _ S
The transition rategy , and the decoherence rajeare X COShAt+2gsinht |+ (N~ 1)

_gA? 1 A UT &? w? .

Vo= =T Yu= Yq€ , y_ngE, X 1_F COSwt—ZFSInwt ,

with the dimensionless parametg+ 2G(8®)?/% character-

izing the strength of the interwell relaxation, and we as- (t):} B (T2+ 0?) 1_)\_2
sumed thaiG(w) is constant in the small-frequency range paz 2 w2+ )\2 2
w~.
Equation (7), with the dissipation term$8) and (9), is 5 1 w?
used below to describe resonant tunneling of flux between Xcoshht+(N"=T")| 1+ 2 coswt|. (11)

the two wells in various regimes. Before doing this, we dis-
cuss the relative magnitude of the two dissipation terms inn Eq. (11), the eigenfrequencies and\ of the system of
this equation. Since the width of the wells is of the samegqs.(10) are

order of magnitude as the barrier between them, the magni-

tude of the flux matrix elements of the intrawell relaxation [((QZ—FZ)Z vz
w,\=

1/2 QZ_FZ
+F282) + 5

I'[p], and of the interwell relaxation[p] (determined, re- 2 (12)
spectively, by the “width” of the wave functions inside the
wells and the distance between the weBbould be close. Equationg11) contain all the information about dynamics of
The main difference between the two relaxation mechanismthe flux tunneling. When the relaxation rafg, is much

is that the intrawell transitions dissipate energy, whereas smaller than the oscillation frequen€y, the tunneling pro-

the interwell relaxationy[p] involves only much smaller cess consists of the weakly damped coherent oscillations of
energies on the order ef A, T. This means that the intrawell the flux between the wells followed by relaxation in the right
relaxation typically dominates the flux-tunneling dynamics.well. With increasing relaxation rate the oscillation part of
In particular, even under the assumed condition of weak rethis process becomes increasingly more damped and turns
laxation (which for I'[ p] means that the ratds; are small into incoherent jumps of the flux from the left into the right
compared to the oscillation frequencies) the rated’; can  well represented by the non-oscillatory exponential decay of
still be much larger than the frequencied\ of the two-state  pq;.
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The matrix elemenp,;(t) has the meaning of the prob- ementp,, of the density matrix and plugging the solution
ability for the flux to remain in the left well at time In the  into the equations for the diagonal elements, we get the

case of monotonous decay @f,, its derivative f(t)= simple rate equations
—[p11(t)]" gives the probability density of the time for flux ) ) )
tunneling between the wells. This probability density can be p11=T"(p2o=p10) +1'2p22, p2o=—p11, (16)

used to find all statistical characteristics of the flux tunnelingkNhere the transfer rate’ = AT, /(I'2+4¢?) between the
process. For instance, the average tinietakes for the flux two wells can be viewed as thez “gozlden—rule” rate of tran-
to tunnel can be calculated as- fqdt tf(t)=/odtpay(t). In sition with the matrix elemenA/2 into the statg2) broad-

the coherent regime, wha(t) oscillates in timef(t) can ened by the relaxatiof,. From the stationary solution of
be negative and cannot be interpreted as probability densit%q (16) we find thatp(o)—F’/(F 1+ 2I), and see that Eq
X 22 2 ) .

and the question of how to define the tunneling timbe- ; .
comes nontrivial. To define,, one needs to establish the (ls.i_r']r;d; eizlosl Liﬁ;]oedlrjgsegnt:ﬁt tu:gal)ngt réfi I allow for
event that terminates the tunneling process. The definition . . tp e=a.% 2 .
adopted below assumes that the tunneling process ends Wh%nOther _S|mple interpretation. At large the wave func_tlon .
the flux makes the transition from the sta® into one of Gf'the eigenstate of the two-state H_amﬂtomqn Ioca_hzed n
the lower energy states in the right well. This definition isthe left well has.the pro_b?‘b"'t}’ amphtudk/Za in the right
motivated by the fact that such a transition eliminates theéVell. The tunneling ratd” in this regime can be found then
possibility for the flux to return into the left well. With such @S the probability to be in the right well times the relaxation
definition, the time the flux spends in the st is included ~ ratel’:
in the tunneling timer which then should be calculated as - 24a 2
I'=T,A%/4e". a7
— fwdt[ (1) + pol D] (13) This simple reasoning indeed reproduces the tails of the peak
0 P11 P22t ] (14) and allows us to obtain an estimate of the tunneling rate
between the resonances. As shown in the Appendix, the
wave function amplitude in the right well between the reso-
nances ismA/[ 2w,Sin(mel w,)]. From this we can write

71:& (14) 1 A 2
202+ T2+ 462 T T2 2usinmelwy))

From Egs.(11) and(13) we obtain the tunneling rate

(18

Equation(14) describes the Lorentzian peak of the resonantt Should be noted that E¢18) is only an estimate, sinde,
flux tunneling. It shows that the resonant flux tunneling un-2"d A depend ons for e~w,, and can be different from
der stationary-bias conditions does not allow one to distinin€ir values at resonance. Howevergat w,, they are con-
guish qualitatively between the regimes of coherent and inStant, and Eqs(14) and(18) c_olnude f°r8>A_’2F2- In this
coherent flux tunneling since the shape of the resonance pe&&nge ofe the tunneling rate* changes as *.
(14) remains the same regardless of the magnitude of the If the interwell _relaxatlon_ls non-negligible, we need to
relaxation/decoherence rafe keep both relaxation terms in E(7). The assumption that
The average tunneling rate * can be calculated without the relaxation rates are small in compari_son withallows _
explicit solution of the time-dependent equations for the denYS to use Eq(9) for the interwell relaxation and makes it
sity matrix. Instead of attempting to describe an individualconvenient to consider the flux dynamics in the eigenstates
tunneling event with the time-dependent solution, we carpasis. Th.e stationary vaIL_Jes of.the off—dmgonal elements of
consider a large number of these events, assuming that aftle density matrixr in this basis are vanishing for weak
each transition from the left to the right well the system is"€laxation. To find the diagonal elementsrofve transform
immediately returned back to its initial state and the proces&d- (8) for the intrawell relaxationwith I';=0 and added
is repeated. This immediate return means that the system 8™ I'2p2; in the evolution ofpy,) into this basis. Neglect-
effectively decaying from the resonant state in the right wellind rapidly oscillating terms, we see that the diagonal part of
directly into the initial state in the left well, and can be mod- the weak intrawell relaxation is
eled by adding the ternh’,p,, into the equation forpq4.
With such a modification, Eq.7) has a nontrivial stationary
solutionp(®, and the tunneling rate™* defined by Eq(13)
can be found from this solution as

2
. - & . .
ri=lo 55 +t% 1“‘& (roo=r11) |, Top=—Trq;.

Combining this expression with EY) for the interwell re-
laxation, we find the stationary values of the diagonal ele-
ments ofr. After transformation back to the flux basis we

. . . . . i i i 0) i -
Since this method does not require solution of the time-finally obtain the stationary elemep) of the density ma

dependent equations for the density matrix, it considerabljfix p in the flux basis and the flux tunneling retes):
simplifies the calculation of the average tunneling rate.

To illustrate this procedure, we consider first the same 7_71:2 Qcoth(Q/2T) + e+
tunneling under the stationary bias conditions described by 2 Qcoth Q/2T)+ u(1+ 2e2/A?)’
Egs.(10) with the termI",p,, included into the equation for
p11- Solving the stationary equation for the off-diagonal el- n=I"5/2g.

T =Tl (15

(19
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FIG. 2. The zero-temperature rate! of flux tunneling between

the wells of the double-well potential as a function of the energy FIG. 3. Schematic diagram of the “photon-assisted” macro-
bias ¢ for different values ofu, which characterizes the relative scopic resonant tunneling of flux stimulated by an rf perturbation of
strength of the two relaxation mechanis(8). The inset shows the strengtha/2.

diagram of the off-resonant transitions.

] ) For largew, u>A, the interwell relaxation is weak close
The parametew in Eq. (19) can be interpreted as the {5 resonance, and for sufficiently small biass x, Eq. (19)
energy at which the characteristic interwell relaxation rate.gincides with Eq(14) with T',<A. However, at larger bias
(which increases with the energy difference between the tWQs. 4, the interwell relaxation increases and the tunneling
resonant statédecomes equal to the raig, of the relax-

ation in the right well. The tunneling ratd9) is plotted in rate is again given by (20). Only whenu becomes com-

Fig. 2 for zero temperature and several valuesuofThe parablg to .the level separatim_zrb in the wells, the interwell
interwell relaxation becomes stronger with decreasing relaxation is completely negligible and the resonant tunnel-
. . ; ing peak has the Lorentzian shape for all relevant energies.
making the the resonant-tunneling peak progressively more Away from resonance, whefrw,,, the interwell tunnel-
. X . X , .
asymmetric. For negative bias when the stat¢2) in the ing with the rate(20) corresponds to the transitions between

right We”. is higher in energy than the state) in the left the states localized in opposite wells that are the closest in
well, the interwell relaxation is suppressed for low tempera-

tures, T<A, and the tail of the resonant peék9) coincides energy, while “intrawell” tunneling(18) corresponds to the

. . transition between the states that are at least next-nearest
W'th. Fhat of the .L_orent2|an pealid). Or_] the other ha nd, for neighbors in energy. Although there is no qualitative differ-
positivee, transitions from the stafd) into |2) are allowed,

- . : . . ence between the two types of the transitions away from the
and if u<A, the interwell relaxation dominates for all posi- yp y

i The t i e d in thi | 1/resonance, they lead to very different shapes for the tunnel-
ive £. The tunneling rate decreases in this case only as ing peaks close to resonance.
with increasinge.

At ¢>A, and vanishing temperatuiie the tunneling rate

_(19) determined_ by the interplay betwe_en the interwell and IV. PHOTON-ASSISTED TUNNELING
intrawell relaxation can be understood in terms of the com- o . . _
petition between the two tunneling patisee inset in Fig. 2 When the SQUID is irradiated with an external rf signal,

One is the direct decay within the right well out of the eigen-the macroscopic resonant flux tunneling can go more effec-
state of the two-state Hamiltonian localized predominantly intively through one of the excited states in the left well of the
the left well, but with a small probability amplitude in the SQUID potential rather than out of the ground state, since
right well. The rate of this decay iE (17). Another is the the amplitude of tunneling- A/_2 out of 'Fhe excited state is
transition between the two eigenstates induced by the inteflUch larger than the tunneling amplitude for the ground
well relaxation that transfers the probability between the twostate. In this section, we consider the situation when an rf
wells and is followed by the intrawell decay out of the lower- Signal of frequencyw resonantly couples the ground state
energy eigenstate with the raffe. The rate of the interwell |0) in the left well of the potential to an excited sttt)

transition between the eigenstates is with energyE in this well (Fig. 3). The energ)E is on the
order ofw,, and the condition of the resonant excitation is
_ gA? that the detuning=E — w is small,y<w, . If the amplitude
y=—". (20 a of the rf excitation is also relatively smalj<w,, the
€ off-resonant coupling to other statés$s not important, and

h d path domi qf tficientl the coupling between the stat@ and|1) can be described
At p<A, t ezsecon path dominates, an for su 'C'em_yin the rotating-wave approximation. In this approximation,
largee, £> A% u, the bottleneck of the relaxation process ishe terms in the coupling that oscillate rapidiyith frequen-
the. interwell transition bet.ween the eigenstates and the tUNsas on the order ofv,) are neglected, and the coupling
neling rate(19) becomes independent of the intrawell rate Hamiltonian is written

S as
I',: 7 1=4. In general, the competition between the two
types of transitions gives an expression for the tunneling
rate, 7 1=T,(y+T)/(y+T,), that agrees with Eq(19) at a iy ”
8>AT 2(7 ) (7 2) g q ) Hrf:§(|0><1|e i t+|1><0|e+l t). (21)
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If the excited statél) in the left well is coupled resonantly probability p4, this can be done through an additional factor
with amplitude — A/2 to a statg2) in the right well that is A in the normalization condition for the stat@), |1), and
shifted in energy by with respect to1), the total Hamil-  |2):

tonian for the flux dynamics in the basis of the three states

|0), |1), and|2) is poot Ap1atpo=1. (25)

To give an example, we can calculate the fa¢tassuming

0 al2 0 . .
that the left well is parabolic in the relevant energy range.
Ho=| a2 v —A2), (22)  Then, the standard result for the linear relaxation of the har-
0 —A/2 v—=¢ monic oscillator (see, e.g., Ref. 28is that the oscillator

dnakes the transitions only between the nearest-neighbor
states and that the transition rate from the sfateinto |m
—1) is proportional tom. This means that in the stationary

1), and|2). Time evolution ofp is described by the same St Pm—1m—1=Mpmm/(M—=1), and if the rf radiation
drives the system into theth excited state of the left well,

Eq. (7) but with the HamiltoniarH, given now by Eq(22). . ;
We begin discussion of the dynamics of flux tunneling in theth€nA=nZp,_;(1/m). To avoid extra parameters, however,
three-state systerf22) with the case when the interwell re- We assume from now on that the st is the first excited
laxation y[ p] can be neglected, and the only mechanism ofstate in the left well, so that=1. _
the energy relaxation in the system is the intrawell relaxation Sufficiently compact analytical expressions for the tunnel-
T'[p]. This relaxation is characterized by the two rafgs, ~ INd rate can be obtained from Eq@3) and (24) only in
of the transitions from the staté,2) into the lower energy certam_llmlts. For example, fogr small rf amplitude and weak
states of the left and right potential well, respectivéfyg.  relaxationa<I’; ,<A, we get
3). An obvious generalization of E(8) for I'[p] to the o
three-state basis gives the off-diagonal part of &yfor the 1o I'a”A
time evolution ofp of the following form: (2v—e—Q0)2(2v—e+ Q)2+ 4[[(v—e)+,w]?

(26)

Equation(26) describes two peak@liscussed in more details
. . . . below) in the dependence of the tunneling rate on the detun-
p12=— (e +(I'1+1'2)/2) p1otiA(p2o—p1)/2—iapel2, ing v. The peaks are broadened by the relaxation, and their
. positions correspond to the two eigenstates of the Hamil-
po=(i(v—e)—T2/2)poy—iapi2—iApe/2. (23)  tonian(2): v=(e+Q)/2. Another expression for the tunnel-
ing rate can be obtained for large relaxation raiés,
Equations(23) allow us to express the off-diagonal ele- s g A: ’
ments ofp in terms of the diagonal ones in the stationary
regime. Inserting the stationary values of the off-diagonal T ,a2A2

As in the previous section, the average flux tunneling rat
7~ 1 can be calculated according to E{5) from the station-
ary density matrixp of the system in the basis of statés,

po1=(iv—T1/2) por+ialpoo—p1)/2—iApgrl2,

elements into the equations for the diagonal elements “l= > > (27
(474 TH[4(v—e)?+T3]
poo=~alm por+I'p1a+T'ap2y, Depending on the relation between the energy biasd the
] relaxation rates, the tunneling raf27) as a function of de-
pr=almpy+Aimp,—Tpg, (24 tuning v contains either ongfor small &) or two separate

peaks(for largee). The peak positions in this case coincide

poo=—AlMp1,—Tpoo, with the position of the energy level4,2) localized in the

two wells.
we calculate the stationary probabili,tgg%) and find the flux For arbitrary parameters it is convenient to use the sta-
tunneling ratg(15). tionary solution of Eqs(23) and (24) to plot the tunneling

Equations(24) were written under the assumption that therate 7~ numerically. To simplify the discussion, we assume
relaxation in the left well b rings the system out of the statethat the relaxation rates in the two wells are the sahg,
|1) directly into the ground stat®). Although this is strictly ~ =T",=T". Figure 4 shows the dependencerof on detuning
true only in the case wher) is the first excited state in the » obtained in this way for several rf amplitudesin the
well, Egs.(24) can be also used to calculate the average fluxegime of small relaxation raté. The main qualitative fea-
tunneling rate in other situations. Indeed, when the rf signature of Fig. 4[that can also be seen in EQ6)] is that for
drives the system into the stdte) that is not the first excited smalla the resonant peak in the tunneling ratés split into
state, the intermediate states in the left well that exist betwo peaks due to coherent oscillations of flux between the
tween the state)) and|1) are populated by the process of two wells. The appearance of such splitting can be easily
relaxation out of 1). If the flux tunneling out of these states understood, since a weak rf signal excites the system not into
is neglectedsimilarly to tunneling out of the stat@)), their  the statg/1) localized in the left well, but into the two hy-
effect on the average tunneling rate can be accounted for Hyridized states formed out of the stat&$ and|2) in the two
inclusion of the occupation probabilities of these states in thevells. The two different energies of the two hybridized states
normalization condition. Since these probabilities in the stalead to the two peaks in the tunneling rate. This means that
tionary regime are proportional to the stationary occupatiorthe splitting of the resonant-tunneling peak is the direct
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FIG. 4. The rater ! of the photon-assisted resonant tunneling
of flux & between the two wells of the SQUID potential as a func-
tion of detuningv for several values of the rf amplitude For 0.2 | a=02A I/A=0.1
discussion see the text. £=0.5A
manifestation of the quantum coherent oscillations of flux g
between the two wells of the SQUID potential. 01
Figure 4 illustrates also how the splitting of the resonant
tunneling peak is suppressed with the increase of the rf am-
plitude. Suppression of the peak splitting can be understood

in terms of the time WA required to establish the stationary 0-0_1.0 0:0 1.0

states hybridized between the two wells. Large rf amplitude VIA

a on the order of the tunnel amplitude causes rapid Rabi ) )
FIG. 5. Evolution of the double-peak structure in the raté of

oscillation between the staté®) and|1) and does not allow the phot isted t flux tunnel function of det
for sufficient time to establish the two hybridized states. The 'c Poton-assisted resonant flux tunneing as a function ot detun-

system is therefore effectively excited into the stt lo- ing v with increasing(a) bias energy and(b) relaxation ratd".
calized in the left well, and single resonant tunneling peak is
formed around the energy of this state. Broadening and sughese two states, the tunneling rate is strongly suppressed. At
pression of this single peak seen in Fig. 4aéncreases »=0, when the system is excited precisely into the sftate
beyondA, is a version of the generic “quantum Zeno” ef- localized in the left well, this condition is satisfied and tun-
fect, when tunneling out of a metastable state is suppressételing rate is strongly suppressed for any energy bia&s
by rapid perturbation of this state. can be seen from E@26) and Fig. 6, in this case the tunnel-
Figure 5 shows the evolution of the coherently split tun-ing rate as a function of is described by a Lorentzian cen-
neling peaks at small rf amplitudewith the bias energy tered around =0. In contrast to resonant tunneling peaks in
and with the relaxation ratE. We see that with increasing the v dependence of the tunneling rate, which have small
energy biagFig. 5a)], the peaks follow the position of the Wwidth proportional to the relaxation ratg the width of this
energy levels and the splitting between them increases. Skorentzian is large\?/T', and is inversely proportional tB.
multaneously, the peak height decreases reflecting the oveYVhen the detuning deviates from zero, there is an energy
all suppression of the tunneling rate as one moves away frofaiass at which the excitation energy coincides with the en-
the resonance. Figurét) shows how the double-peak struc- ergy of one of the hybridized states. The tunneling rate has a
ture in the small-bias regime representing the coherent mixpeak under such resonance conditions. For not-too-srsll
ing of the flux states in the two wells is suppressed by in-this resonant peak again has a small width proportion&l.to
creasing relaxation raté. The structure is visible up to the
relaxation rated’=0.5A. 0.15
The peaks in Fig. 5 are shown only fee=0. The peak
structure for negative can be understood from the “sym-
metry” relation 7 X(—v,—&)=7"Y(v,e) that can be de- 040 | Fo1A
duced from Egs(23) and(24). Equations(23) show that in
the stationary regime, changing the signo# is equivalent
to changing the sign of,A and replacing the off-diagonal 005 |
elements ofp with their complex conjugate values. This
transformation obviously does not change the transition rates v/A= 0.1
in Eq. (24), and therefore does not change the flux tunneling 0.00 , 00
rate 7 1. T60  -30 0.0 3.0 6.0
Another interesting manifestation of the coherent flux tun- &/A
neling between the wells can be seen in the dependence of FiG. 6. Bias-energy dependence of the photon-assisted flux tun-
the tunneling rate on the bias energyat fixed detuningr  neling rate at fixed detuning for small rf amplitude and relaxation
(Fig. 6). For weak relaxation, the hybridized states are wellrate I'. For vanishing detuning, the tunneling rate exhibits a very
developed, and when the rf excitation energy lies betweebroad maximum with a width inversely proportional o

I=0.1A

@ry’
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In Fig. 6, one can see how the transition between the broad

and narrow tunneling peaks takes placefer0. As before, a=0.3A

the results for negative detuning can be deduced from the 04 | £/A=0.0

relation 7 Y(—v,—e)=7"Y(v,¢e). g=0.03
It should be noted also that the fact that each curve in Fig. -

6 has only one peak of the tunneling rate' does not con- g

tradict the experimental resultswhich show double peak = o2t

structure in the dependence of! on the external fluxb,
through the SQUID loop, which controls the bias enesgy
The reason for this is that for experimental SQUID param-

eterers, variations o, change not only but the energy 0.0 EE==i= : .
separation of the states within the same well also, and there- -2.0 -1.0 0.0 1.0 2.0
fore affect the detuning. VIA

Finally, we discuss the effect of weak interwell relaxation £ 7. The rater 1 of the photon-assisted flux tunneling as a
on the photon-assisted tunneling. We start by generalizingnction of the detuning in the case of symmetric coupling be-
Eq. (9) for this relaxation to the three-state situation relevantyeen the tunneling flux states=0, in the presence of both inter-
for the photon-assisted tunneling. Under the natural assumfyell and intrawell relaxation. Different curves correspond to differ-

tion that the average flux in the sta{@ and|1) in the left  ent magnitudes of the intrawell relaxation rdterelative to the
well of the SQUID potential is the same, the part of theinterwell relaxation rate.

dissipative couplind3) that corresponds to the interwell re-
laxation is the interwell relaxation produce two symmetric resonant tun-
neling peakgsee Figs. 4 and(8)]. As can be seen from Fig.

100 7, the interwell relaxation makes the tunneling peaks asym-
V=—1;60| 0 1 0 |=—1;6DU. (28)  metric. The positiver side of the double-peak structure cor-
0 0 -1 responds to excitation of the system into the lower-energy

eigenstate and is unaffected by the interwell relaxation at
While Eq.(29) is written in the flux basi$0),|1),|2), weak  zero temperature, since there is no energy in this regime to
relaxation is conveniently described in the basis of the eigenereate additional tunneling path. In contrast, the negative-
states|n) of the Hamiltonian(22). In this basis, the contri- side of the double-peak structure corresponds to excitation of
bution of the interwell relaxatio28) to the evolution of the the system into the eigenstate with larger energy, and the
density matrixp is given by the standard expression similar
to Eq.(9):

bnn:% (YmnPmm™ YnmPnn)» (29

an’

. . 1
Pnm= — ')’mn+§2k (Ynkt ¥Ymi) |Pnm, NFM.

Transition and dephasing rates in these equations are

g|Unm|2(8n_8m) , gt
- 1—e (en—em)/T ’ ')’nm:?(unn_umm)za

Ynm

0.4

whereU,,,, are the matrix elements of the operatb(28) in
the eigenstates basis, ang is the energy of the eigenstate i a=0.3A
|n>_ j'! v=2.0A

Interwell relaxation can be included into the evolution i g=0.03
equations for the density matrix on the basis of E2P) ' ]
numerically. We diagonalize the Hamiltonié22), calculate
the interwell relaxation term&9) in the eigenstates basis,
and transfer them into the flux basis, where the intrawell
relaxation has the simple for(23), (24). Calculating finally
the stationary value of the density matyixwe find the flux 0.0 . -
tunneling ratg(15). -3.0 -2.0 -1.0 0.0

Figures 7 and 8 show results of such a calculation ob- e/A
tained at vanishing temperatufie In Fig. 7, the tunneling FIG. 8. The rater ! of the photon-assisted flux tunneling as a

rate is plotted as a function of the detuningor 6=0 and  fynction of the bias energy for two “symmetric” values of the
several values of the relative strength of the intrawell relaxdetuning» and the same rates of the intrawell relaxatioras in

ationI'. The eigenstates of the two-state Hamiltoniareat Fig. 7. In(a), 7~ * decreases with increasitgfor ¢ above the peak,
=0 are symmetric between the two wells, and in absence okhile in (b), the peak height increases with
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interwell relaxation increases the rate of tunneling out of thighat is driven by interwell relaxation, followed by direct re-
state. Because of this, the negativgeak in Fig. 7 is larger laxation in the right well with the rat€’,. As in Sec. Il, the
than the tunneling peak at positive and the tunneling rate coexistence of the two tunneling paths gives the following
at »<<0 decreases much more slowly away from the peakotal tunneling rate:
than at positivev.

Interwell relaxation introduces asymmetry also in the de- ?+F
pendence of the flux tunneling rate on the bias energy 7 t=T
Examples of such dependence are shown in Fig. 8 for two

values of the detuning;= = 2A. In b_oth cases, the tunneling 5na can check that Eq€30) and (32) agree, respectively,
rate has a resonant peakeat v similar to the peaks shown it the negativee tail of the resonant tunneling peak in Fig.

in Fig. 6 for vanishing interwell relaxation, when the peaks (b) and the positivee tail of the peak in Fig. &)

for the two values of detuning are symmetric. Comparison ot8 In summary, we have studied the effecté of .two types of
Figs. &a) and gh) ShO\.NS that the_ interwell relaxation mgkes relaxation mechanisms on the macroscopic resonant tunnel-
the peaks asymmetric. In particular, the peakvatO is g of flyx in SQUID’s under stationary-bias conditions and
smaller than the pgak a>0. Althc_)ugh this asymmetry aP- with external rf irradiation. Coherent splitting of the
pears to be opposite to that in Fig. 7, where the negative- osonant-tunneling peaks by rf radiation provides a conve-

peak is larger, it has the same origin as in Fig. 7. The peaksjent way of studying quantum coherence of flux states.
at v<0 and »>0 correspond to resonant excitation of the

system into, respectively, the upper and lower energy eigen-

states. When the resonance occurs|fd>A, as in Fig. 8, ACKNOWLEDGMENT

the eigenstates are already to a large extent localized in one This work was supported by ARO Grant No.

or the other well. Ate=v»>0, the lower eigenstate is cen- paAAD199910341.

tered in the right well and the interwell relaxation increases

the tunneling rate, while at=»<0 the lower eigenstate is

centered in the left well and the interwell relaxation brings

the system back to this well suppressing the tunneling rate. |n the Appendix we show explicitly how the Hamiltonian

As aresult, the resonant tunneling peak in Fig) 8v>0) is  of the two-well systent1) can be reduced at resonance to the

larger than in Fig. &) (»<<0). The height of the negative-  two-state form(2), and derive an expression for the tunnel-

peak is more sensitive to the relative strength of the twang amplitudeA. Assuming that the transparen€y of the

relaxation mechanisms and decreases with decreasin§f rateparrier separating the two wells is smdll<1, and that the

of the intrawell relaxation. resonance occurs between the states with largee can use
The tails of the photon-assisted resonant peaks can hfie WKB approximation for the wave functionsg, (®) of

described analytically. When the bias energy and detuninghe Hamiltonian(1). In this approximation, the wave func-

are not close to any resonan¢el,||,|v—«[>a,A both the  tion between the right and the left turning poimtand| is
interwell tunneling and rf excitation can be treated as pertur-

bations. The dynamics of flux tunneling in this regime can be A
described as a coexistence of the two tunneling paths similar Y(P)= —cogw(P)— 5], (A1)
to the off-resonant tunneling discussed in Se¢séle inset to \/B

Fig. 2. If v>¢, the effective energy — ¢ of the statg2) in ) B P ,
the right well[i.e., the energy of this state brought down by With the WKB phaSGN(CD)—(];éﬁ)L d®’p(®’) — /4 and
momentump=2C[E—U(®)]"2 In Eq. (A1), § is a con-

a quantum of rf radiation, as in the Hamiltoni&®2)] is : \ H-
above the energy of the initial staf@) in the left well, and ~ Stant phase shift, ané is a normalization constant. The
the only energy-allowed tunneling path is direct relaxation inPhasew is defined in such a way that=0 for an isolated
the right well out of the perturbed sta@). Similarly to Eq. well, when the wave function decays exponentially in the

(17), perturbation theory im,A gives for the ratd™ of this classically inaccessible regio®>r,d<I. When the two
tunneling: wells are coupled, the energyof the state common to them

deviates from the eigenenergies of the isolated wells that
are determined by the Bohr-Sommerfeld condition
I',a’A? (U#) f{pd® =2m(n+1/2). For weak tunneling, this devia-
W' (30 tion is small in comparison to the state energy, and creates a
vi(v—e) small but nonvanishing phase shéft

= 32
T, (32)

APPENDIX

F:

If v<e, the effective energy of the stdt2) is lower than the 1(r E—¢,

energy of the statf0), and in addition to the tunnelingg0) o= gf [P(E)—p(en)]=m——, (A2)

there is a competing tunneling process. It consists of a tran- : P

sition between the perturbed sta{@y and|2) with the rate wherew, is the frequency of the classical oscillations in the

Vs well which in the WKB approximation determines the spac-

ing of the energy levels.

ga?A? At nonvanishings, the wave functiorfAl) has a part that

;: e (31) grows exponentially in the classically inaccessible region, as
4v%(e—v) one can see rewriting it as
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Agl® iAsing with the tunneling amplitude
Y= ——=cosw(d)— eW(®), (A3)
\/6 \/E A= (w10)*
According to general rules of the WKB approximation—see, B T D

e.g., Ref. 30, the two terms in this expression produce expo-
nentially decaying and growing components of the wav
functions with the amplitudes €' °/2 and — A sin 8, respec-

tively. To find the energ¥ we need to match the amplitudes
of the wave functions of the right and left wells in the barrier
region. Under the conditions of resonance, equating the amy
plitudes and keeping only the terms of the first ordeDiwe

€Since the resonant stat¢s,2) are orthogonal to all other
states of the full Hamiltoniaril), this proves that their dy-
namics can be described by the Hamiltoni@n

Away from resonance, whes=e;—&e,~ w,, one of the
mplitudesa (for the states localized in the left welk,) is
small, «,~D. Keeping, as before, only the terms of the first

get order inD, we see from Eq(A6) that in this cas&;=¢1,
A E—e1 A D A E-ep_ _A D (A4) €. 8:1=0. Matching the growing wave function in the right
1w, 227" 72 o, 127 well with the decaying wave function in the left well we find

. . that away from the resonance
whereeg;, j=1,2 are the energies of the resonant states, an(E] y

D:exp[—(llh)f'rzl| p|dd®}.
The probability to be in the right/left well is directly re-
lated to the wave function amplitudés :
i ,_ BIA?
ﬁ do| ¢j| T e ! (A5) Equation(A7) extrapolates smoothly between the successive
: ! resonances.
whereB is thej-independent part of the normalization con-  Making use of the harmonic approximation for the poten-
stant. Introducing the amplitudes of this probability, «; tial U(®), one can show that the results of this appendix
=A; /wjl’z, we bring Eq.(A4) into the form that coincides [Eqgs.(A6) and(A7)] can be extended to the low-lying states
with the Schrdinger equation of the two-state system: with small n which cannot be described with the WKB ap-
proximation. Such an extension leads only to minor modifi-

A

:2w25in(778/w2)' (A7)

an

_ A _ A cations in the definition of the barrier transpareixin these
Eal—slal 2 Ao, Ea2 Ex0p 2 aq, (AG) equations.
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