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Macroscopic resonant tunneling of magnetic flux

D. V. Averin, Jonathan R. Friedman, and J. E. Lukens
Department of Physics and Astronomy, SUNY at Stony Brook, Stony Brook, New York 11794

~Received 3 May 2000!

We have developed a quantitative theory of resonant tunneling of magnetic flux between discrete macro-
scopically distinct quantum states in superconducting quantum interference device systems. The theory is
based on the standard density-matrix approach. Its elements include the discussion of the two different relax-
ation mechanisms that exist for the double-well potential, and description of the ‘‘photon-assisted’’ tunneling
driven by external rf radiation. It is shown that in the case of coherent flux dynamics, rf radiation should lead
to splitting of the peaks of resonant flux tunneling, indicating that the resonant tunneling is a convenient tool
for studying macroscopic quantum coherence of flux.
to
ta
p

op
i.e
ge
ic
e

r o
c
v

f.

o
r

t t
g
o

rv
e
p
y
fe
ns
g

pa
un
ly
e

e
l
s
in

fe
UI
n
a
he
e

he

n-
n-
on-

of
rent
tun-
nt
lls
ing
the
ved
of

a-
n-
the
ing

in
III

e

he
bi-
ergy

o-
ci-

er
I. INTRODUCTION

Bose condensates of Cooper pairs in superconduc
have a remakable ability to populate a single quantum s
with a macroscopically large number of particles. This pro
erty of the Cooper pair condensates leads to macrosc
quantum effects in the dynamics of Josephson junctions,
makes it possible for a Josephson junction to behave lar
as a pure quantum state of a simple quantum mechan
system while still containing macroscopically large numb
of Cooper pairs. Due to the strongly nonlinear characte
the Josephson dynamics even in the classical regime, ma
scopic quantum effects can be quite nontrivial. They ha
been known for the past twenty years—see reviews in Re
and are continuing to attract considerable interest.2 This in-
terest is to a large extent stimulated by the challenge to
understanding of the foundations of the quantum theory p
sented by direct manifestations of quantum mechanics a
macroscopic level.3–5 Another recent motivation for studyin
quantum effect in Josephson dynamics is provided by p
sible applications to quantum computation.6–9

The most advanced macroscopic quantum effect obse
experimentally up to now is resonant tunneling betwe
quantized energy levels in the adjacent wells of the Jose
son potential.10,11The aim of this work is to develop a theor
of this phenomenon in superconducting quantum inter
ence device~SQUID! systems, where the potential contai
two wells, each with a different value of the average ma
netic flux. We consider the regime of weak energy dissi
tion important for studying coherent effects in resonant t
neling. This regime has not been discussed appropriate
the existing treatments of resonant tunneling in double-w
potentials12–14 or multiwell potentials corresponding to th
current-biased Josephson junctions.15,16 The most essentia
new feature of our approach is an account of the two type
relaxation mechanisms, intrawell and interwell, that exist
the system. The two relaxation mechanisms are very dif
ent in their dependence on the parameters of the SQ
potential, and lead to different shapes of the resonant tun
ing peaks. Differences in relaxation mechanisms also m
macroscopic resonant tunneling of flux different from t
otherwise very similar ‘‘mesoscopic’’ resonant tunneling b
tween charge states of small Josephson junctions17,18 and
electron states in quantum dots.19–21

Another new element of this work is the discussion of t
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‘‘photon-assisted’’ macroscopic resonant flux tunneling u
der rf irradiation. We show that in contrast to tunneling u
der stationary-bias conditions, the peaks of the phot
assisted tunneling depend qualitatively on the strength
decoherence in the flux dynamics. In the case of cohe
flux dynamics, the resonant peaks of the photon-assisted
neling are split in two. The splitting reflects the cohere
hybridization of the macroscopic flux states in the two we
of the SQUID potential and is suppressed with increas
rate of decoherence. Very recently, such a splitting of
resonant flux-tunneling peaks has been obser
experimentally,22 demonstrating the quantum coherence
the macroscopically distinct flux states.22,23 The paper is or-
ganized as follows. In Sec. II we derive the evolution equ
tions for the density matrix describing the resonant flux tu
neling under stationary-bias conditions, and introduce
two relaxation mechanisms for tunneling dynamics. Us
these equations, we calculate the rate of flux tunneling
Sec. III. In Sec. IV, we extend the results of Secs. II and
to the case of photon-assisted tunneling.

II. EQUATIONS FOR THE DENSITY MATRIX

To derive equations for the density matrix in the regim
of resonant tunneling of magnetic fluxF we consider the
standard model of the phase dynamics in SQUID’s. T
combination of the magnetic energy of the SQUID loop
ased with an external flux and the Josephson coupling en
of the SQUID junctions~for details, see, e.g., Ref. 24! pro-
duces the double-well potentialU(F) for F evolution
~shown schematically in Fig. 1 below!. The main part of the
Hamiltonian governing the flux dynamics consists of the p
tentialU(F) and the charging energy of the junction capa
tanceC:

H05
Q2

2C
1U~F!. ~1!

The chargeQ on the junction capacitance and the fluxF
satisfy standard commutation relations@F,Q#5 i\.

The two wells of the potentialU(F) have discrete energy
states« jn with characteristic energy separation on the ord
of v j , where j 51,2 is the well index,v j are the oscillation
11 802 ©2000 The American Physical Society
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frequencies around the potential minima, andn50,1, . . . ,
numbers the states within each well. The two frequenciesv j
have the same order of magnitudev1;v2[vp . External
magnetic flux controls the energy difference between
states in opposite wells. Away from the resonance con
tions, when all the energies« jn are separated by large energ
gaps of ordervp , the statesu jn& are localized within thej th
well, and the amplitude of the wave functionsc jn(F) in the
opposite well is very small. However, when the energies
the two statesu1&[u1n1& and u2&[u2n2& are close,u«u
!vp , where «[«1n1

2«2n2
, these states become strong

coupled, and the wave functions spread over the both w
As shown in the Appendix, strong coupling of the sta
u1,2& at resonance can be described by the tunneling am
tudeD, and the Hamiltonian~1! reduces to the regular two
state form in the basis of these states:

H05
1

2
@«~ u1&^1u2u2&^2u!2D~ u1&^2u1u2&^1u!#, ~2!

D5~v1v2!1/2D/p,

whereD is the quantum mechanical transparency of the b
rier separating the wells.

Without perturbations, the two-state dynamics describ
by Eq. ~2! is decoupled from the other states of the Ham
tonian ~1!. The most important perturbation creating su
coupling is the energy dissipation that induces transiti
between the statesu1,2& and other statesu jn&. In the relevant
temperature range below superconducting energy gap o
junction electrodes, the quasiparticle tunneling is suppres
and the main source of energy dissipation is the electrom
netic environment of the system. Under the assumption
the electromagnetic modes of the environment are in equ
rium at temperatureT, and are well described by linear ele
trodynamics, the interaction between the fluxF and the heat
bath of these modes can be written as

V52I fF. ~3!

Here I f is the fluctuating current created in the SQUID lo
by the environment, with the correlation function given
the fluctuation-dissipation theorem:

FIG. 1. Schematic diagram of the macroscopic resonant tun
ing of flux F in the double-well potentialU(F) at low tempera-
tures under stationary-bias conditions. The flux tunnels out
ground stateu1& in the left well coupled with the amplitude2D/2
to the resonant stateu2& in the right well, where it decays with the
rateG2 into the lower states in this well.
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^I f~ t !I f~ t1t!&5E dv

p

vG~v!eivt

12e2v/T
, ~4!

where the angle brackets denote averaging over the equ
rium density matrix of the environment, andG(v) is the
dissipative part of the environment conductance. Equa
~4! is sufficient to characterize completely the effects of t
weak energy dissipation considered in this work. For ar
trary dissipation strength, one can use the Caldeira-Leg
model25 to express explicitly the environment Hamiltonia
and the current operatorI f in terms of a set of harmonic
oscillators.

The interaction~3! induces both ‘‘vertical’’ transitions
within each well and direct interwell transitions. In terms
the two-state dynamics with the Hamiltonian~2!, the latter
correspond to the modulation of the tunneling amplitudeD
by the environment. The matrix elements of this type of
terwell transitions are, however, smaller by a factor ofD/vp
than those of the intrawell transitions. The small matrix e
ments can be neglected under the conditions of resona
when the flux tunneling between the two wells is domina
by the stronger resonant processes. In this approximation
can omit the terms in the flux operator in the interaction~3!
that are nondiagonal in the well indexj:

F5 (
j ,n,n8

Fn,n8
( j ) u jn&^ jn8u. ~5!

Here Fn,n8
( j ) are the matrix elements ofF in the u jn& basis.

The perturbation~3! with the flux operator~5! has two ef-
fects on the dynamics of the statesu1,2&. The first is fluctua-
tions of the energy difference«, which induce transitions
between these states and lead to the loss of mutual coher
between them. The part of theF operator~5! responsible for
these fluctuations can be written asdF(u1&^1u2u2&^2u),
wheredF is half of the difference between the average fl
values in the statesu1& and u2&. The remaining terms in Eq
~5! induce intrawell transitions from the statesu1& andu2& to
the other states in the corresponding wells.

For weak dissipation both effects can be described qu
titatively by the standard density matrix technique—see, e
Ref. 26. The description starts from the equation for the e
lution of the density matrixr, obtained treating the coupling
V ~3! in second-order perturbation theory:

ṙ~ t !52 i @H0 ,r#2E t

dt^@V~ t !,@V~t!,r~t!##&. ~6!

If the environment has a large cutoff frequencyvc@«,D, the
density matrix evolves slowly on the time scale of variatio
of V(t), and we can make the Markov approximationr(t)
.r(t) in the last term of Eq.~6!. The condition of weak
dissipation also allows us to keep only the dissipative ter
in Eq. ~6! that do not oscillate in time with frequencies of th
main HamiltonianH0, since only these terms lead to effec
that accumulate with time. Using these approximations
evaluate the dissipative part of the Eq.~6!, we obtain the
final equation for the density matrix in the basis of reson
states u1,2& relevant for the transfer of flux between th
wells:

l-

f
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ṙ52 i @H0 ,r#1G@r#1g@r#. ~7!

The termG in this equation describes the effect of the i
trawell transitions from the statesu1& and u2&:

G@r#52S G1r11, ~G11G2!r12/2

~G11G2!r21/2, G2r22
D . ~8!

At temperatures smaller than energy separation in the w
the total decay rateG j in Eq. ~8! of the stateu j & into the
states with lower energy in the same well is

G j5 (
n,nj

2uFn,nj

( j ) u2

\2
~«nj

2«n!G~«nj
2«n!.

The second dissipation termg@r# in Eq. ~7! describes
transitions and decoherence within theu1&, u2& subspace,
and has a simple form in the basis of energy eigenstate
the two-state Hamiltonian~2!:

g@r#52U†S gur 112gdr 22, S g1
gd1gu

2 D r 12

S g1
gd1gu

2 D r 21, gdr 222gur 11

D U.

~9!

Here r is the density matrix in the eigenstate basis:r
5UrU†, andU is the rotation matrix from this basis to th
flux basisu1&, u2&:

U5@~12«/V!1/2sz1~11«/V!1/2sx#/A2,

where thes ’s denote Pauli matrices, andV[(«21D2)1/2.
The transition ratesgd,u and the decoherence rateg are

gd5
gD2

V

1

12e2V/T
, gu5gde2V/T, g52gT

«2

V2
,

with the dimensionless parameterg52G(dF)2/\ character-
izing the strength of the interwell relaxation, and we a
sumed thatG(v) is constant in the small-frequency rang
v;V.

Equation ~7!, with the dissipation terms~8! and ~9!, is
used below to describe resonant tunneling of flux betw
the two wells in various regimes. Before doing this, we d
cuss the relative magnitude of the two dissipation terms
this equation. Since the width of the wells is of the sa
order of magnitude as the barrier between them, the ma
tude of the flux matrix elements of the intrawell relaxati
G@r#, and of the interwell relaxationg@r# ~determined, re-
spectively, by the ‘‘width’’ of the wave functions inside th
wells and the distance between the wells! should be close.
The main difference between the two relaxation mechani
is that the intrawell transitions dissipate energyv j , whereas
the interwell relaxationg@r# involves only much smaller
energies on the order of«,D,T. This means that the intrawe
relaxation typically dominates the flux-tunneling dynamic
In particular, even under the assumed condition of weak
laxation ~which for G@r# means that the ratesG j are small
compared to the oscillation frequenciesv j ) the ratesG j can
still be much larger than the frequencies«,D of the two-state
ls,

of
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dynamics. The interwell relaxationg@r# will generally only
be stronger than the intrawell relaxation if the environme
has relatively low cutoff frequencyvc!vp .

III. STATIONARY BIAS

In this section, we calculate the rate of the resonant t
neling between the wells in the situation when the exter
flux through the SQUID loop does not contain an ac com
nent, and the energy dissipation drives the initial flux state
the left well towards equilibrium. At low temperaturesT
!vp the flux stays initially in the ground state of the le
well and then tunnels into the right well out of this state~Fig.
1!. In this case, the relaxation rateG1 obviously vanishes.
We begin by considering the situation with only the intraw
relaxation present. Equation~7! can then be written in matrix
elements as

ṙ115DImr12, ṙ2252DImr1222Gr22,

ṙ1252~ i«1G!r121~ iD/2!~r222r11!, ~10!

with G2/2[G in this section.
After transformation to the real and imaginary parts of t

off-diagonal matrix elementr12 and the sum/differencer11
6r22 of the diagonal elements of the density matrix, Eq
~10! can be solved directly with the initial condition that th
flux is in the left well at timet50, r11(0)51:

r11~ t !5
1

2

e2Gt

v21l2 H ~G21v2!F S 11
l2

G2D
3coshlt12

l

G
sinhlt G1~l22G2!

3F S 12
v2

G2D cosvt22
v

G
sinvtG J ,

r22~ t !5
1

2

e2Gt

v21l2 F ~G21v2!S 12
l2

G2D
3coshlt1~l22G2!S 11

v2

G2D cosvtG . ~11!

In Eq. ~11!, the eigenfrequenciesv andl of the system of
Eqs.~10! are

v,l5F S ~V22G2!2

4
1G2«2D 1/2

6
V22G2

2 G1/2

. ~12!

Equations~11! contain all the information about dynamics o
the flux tunneling. When the relaxation rateG2 is much
smaller than the oscillation frequencyV, the tunneling pro-
cess consists of the weakly damped coherent oscillation
the flux between the wells followed by relaxation in the rig
well. With increasing relaxation rate the oscillation part
this process becomes increasingly more damped and t
into incoherent jumps of the flux from the left into the rig
well represented by the non-oscillatory exponential decay
r11.
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The matrix elementr11(t) has the meaning of the prob
ability for the flux to remain in the left well at timet. In the
case of monotonous decay ofr11, its derivative f (t)5
2@r11(t)#8 gives the probability density of the time for flu
tunneling between the wells. This probability density can
used to find all statistical characteristics of the flux tunnel
process. For instance, the average timet it takes for the flux
to tunnel can be calculated ast5*0

`dt t f(t)5*0
`dtr11(t). In

the coherent regime, whenr11(t) oscillates in time,f (t) can
be negative and cannot be interpreted as probability den
and the question of how to define the tunneling timet be-
comes nontrivial. To definet, one needs to establish th
event that terminates the tunneling process. The defini
adopted below assumes that the tunneling process ends
the flux makes the transition from the stateu2& into one of
the lower energy states in the right well. This definition
motivated by the fact that such a transition eliminates
possibility for the flux to return into the left well. With suc
definition, the time the flux spends in the stateu2& is included
in the tunneling timet which then should be calculated as

t5E
0

`

dt@r11~ t !1r22~ t !#. ~13!

From Eqs.~11! and ~13! we obtain the tunneling rate

t215
D2G2

2D21G2
214«2

. ~14!

Equation~14! describes the Lorentzian peak of the reson
flux tunneling. It shows that the resonant flux tunneling u
der stationary-bias conditions does not allow one to dis
guish qualitatively between the regimes of coherent and
coherent flux tunneling since the shape of the resonance
~14! remains the same regardless of the magnitude of
relaxation/decoherence rateG.

The average tunneling ratet21 can be calculated withou
explicit solution of the time-dependent equations for the d
sity matrix. Instead of attempting to describe an individu
tunneling event with the time-dependent solution, we c
consider a large number of these events, assuming that
each transition from the left to the right well the system
immediately returned back to its initial state and the proc
is repeated. This immediate return means that the syste
effectively decaying from the resonant state in the right w
directly into the initial state in the left well, and can be mo
eled by adding the termG2r22 into the equation forr11.
With such a modification, Eq.~7! has a nontrivial stationary
solutionr (0), and the tunneling ratet21 defined by Eq.~13!
can be found from this solution as

t215G2r22
(0) . ~15!

Since this method does not require solution of the tim
dependent equations for the density matrix, it considera
simplifies the calculation of the average tunneling rate.

To illustrate this procedure, we consider first the sa
tunneling under the stationary bias conditions described
Eqs.~10! with the termG2r22 included into the equation fo
r11. Solving the stationary equation for the off-diagonal
e
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ementr12 of the density matrix and plugging the solutio
into the equations for the diagonal elements, we get
simple rate equations

ṙ115G8~r222r11!1G2r22, ṙ2252 ṙ11, ~16!

where the transfer rateG85D2G2 /(G2
214«2) between the

two wells can be viewed as the ‘‘golden-rule’’ rate of tra
sition with the matrix elementD/2 into the stateu2& broad-
ened by the relaxationG2. From the stationary solution o
Eq. ~16! we find thatr22

(0)5G8/(G212G8), and see that Eq
~15! indeed reproduces the tunneling rate~14!.

The tails of the resonant peak~14! at «@D,G2 allow for
another simple interpretation. At large«, the wave function
of the eigenstate of the two-state Hamiltonian localized
the left well has the probability amplitudeD/2« in the right
well. The tunneling rateḠ in this regime can be found the
as the probability to be in the right well times the relaxati
rateG2:

Ḡ5G2D2/4«2. ~17!

This simple reasoning indeed reproduces the tails of the p
~14! and allows us to obtain an estimate of the tunneling r
between the resonances. As shown in the Appendix,
wave function amplitude in the right well between the res
nances ispD/@2v2sin(p«/v2)#. From this we can write

t215G2S pD

2v2sin~p«/v2! D
2

. ~18!

It should be noted that Eq.~18! is only an estimate, sinceG2
and D depend on« for «;v2, and can be different from
their values at resonance. However, at«!v2, they are con-
stant, and Eqs.~14! and ~18! coincide for«@D,G2. In this
range of« the tunneling ratet21 changes as«22.

If the interwell relaxation is non-negligible, we need
keep both relaxation terms in Eq.~7!. The assumption tha
the relaxation rates are small in comparison withD, allows
us to use Eq.~9! for the interwell relaxation and makes
convenient to consider the flux dynamics in the eigensta
basis. The stationary values of the off-diagonal elements
the density matrixr in this basis are vanishing for wea
relaxation. To find the diagonal elements ofr, we transform
Eq. ~8! for the intrawell relaxation~with G150 and added
term G2r22 in the evolution ofr11) into this basis. Neglect-
ing rapidly oscillating terms, we see that the diagonal par
the weak intrawell relaxation is

ṙ 115G2F2«

2V
1

1

4 S 11
«2

V2D ~r 222r 11!G , ṙ 2252 ṙ 11.

Combining this expression with Eq.~9! for the interwell re-
laxation, we find the stationary values of the diagonal e
ments ofr. After transformation back to the flux basis w
finally obtain the stationary elementr22

(0) of the density ma-
trix r in the flux basis and the flux tunneling rate~15!:

t215
G2

2

Vcoth~V/2T!1«1m

Vcoth~V/2T!1m~112«2/D2!
, ~19!

m[G2/2g.
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The parameterm in Eq. ~19! can be interpreted as th
energy at which the characteristic interwell relaxation r
~which increases with the energy difference between the
resonant states! becomes equal to the rateG2 of the relax-
ation in the right well. The tunneling rate~19! is plotted in
Fig. 2 for zero temperature and several values ofm. The
interwell relaxation becomes stronger with decreasingm,
making the the resonant-tunneling peak progressively m
asymmetric. For negative bias«, when the stateu2& in the
right well is higher in energy than the stateu1& in the left
well, the interwell relaxation is suppressed for low tempe
tures,T!D, and the tail of the resonant peak~19! coincides
with that of the Lorentzian peak~14!. On the other ha nd, fo
positive«, transitions from the stateu1& into u2& are allowed,
and if m<D, the interwell relaxation dominates for all pos
tive «. The tunneling rate decreases in this case only as«
with increasing«.

At «@D, and vanishing temperatureT, the tunneling rate
~19! determined by the interplay between the interwell a
intrawell relaxation can be understood in terms of the co
petition between the two tunneling paths~see inset in Fig. 2!.
One is the direct decay within the right well out of the eige
state of the two-state Hamiltonian localized predominantly
the left well, but with a small probability amplitude in th
right well. The rate of this decay isḠ ~17!. Another is the
transition between the two eigenstates induced by the in
well relaxation that transfers the probability between the t
wells and is followed by the intrawell decay out of the lowe
energy eigenstate with the rateG2. The rate of the interwell
transition between the eigenstates is

ḡ5
gD2

«
. ~20!

At m,D, the second path dominates, and for sufficien
large«, «@D2/m, the bottleneck of the relaxation process
the interwell transition between the eigenstates and the
neling rate~19! becomes independent of the intrawell ra
G2 : t215ḡ. In general, the competition between the tw
types of transitions gives an expression for the tunne
rate,t215G2(ḡ1Ḡ)/(ḡ1G2), that agrees with Eq.~19! at
«@D.

FIG. 2. The zero-temperature ratet21 of flux tunneling between
the wells of the double-well potential as a function of the ene
bias « for different values ofm, which characterizes the relativ
strength of the two relaxation mechanisms~19!. The inset shows the
diagram of the off-resonant transitions.
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For largem, m@D, the interwell relaxation is weak clos
to resonance, and for sufficiently small bias,«!m, Eq. ~19!
coincides with Eq.~14! with G2!D. However, at larger bias
«@m, the interwell relaxation increases and the tunnel
rate is again given byḡ ~20!. Only whenm becomes com-
parable to the level separationvp in the wells, the interwell
relaxation is completely negligible and the resonant tunn
ing peak has the Lorentzian shape for all relevant energ

Away from resonance, when«;vp , the interwell tunnel-
ing with the rate~20! corresponds to the transitions betwe
the states localized in opposite wells that are the closes
energy, while ‘‘intrawell’’ tunneling~18! corresponds to the
transition between the states that are at least next-ne
neighbors in energy. Although there is no qualitative diffe
ence between the two types of the transitions away from
resonance, they lead to very different shapes for the tun
ing peaks close to resonance.

IV. PHOTON-ASSISTED TUNNELING

When the SQUID is irradiated with an external rf signa
the macroscopic resonant flux tunneling can go more ef
tively through one of the excited states in the left well of t
SQUID potential rather than out of the ground state, sin
the amplitude of tunneling2D/2 out of the excited state is
much larger than the tunneling amplitude for the grou
state. In this section, we consider the situation when an
signal of frequencyv resonantly couples the ground sta
u0& in the left well of the potential to an excited stateu1&
with energyE in this well ~Fig. 3!. The energyE is on the
order ofvp , and the condition of the resonant excitation
that the detuningn5E2v is small,n!vp . If the amplitude
a of the rf excitation is also relatively small,a!vp , the
off-resonant coupling to other states27 is not important, and
the coupling between the statesu0& andu1& can be described
in the rotating-wave approximation. In this approximatio
the terms in the coupling that oscillate rapidly~with frequen-
cies on the order ofvp) are neglected, and the couplin
Hamiltonian is written as

Hr f 5
a

2
~ u0&^1ue2 int1u1&^0ue1 int!. ~21!

y FIG. 3. Schematic diagram of the ‘‘photon-assisted’’ mac
scopic resonant tunneling of flux stimulated by an rf perturbation
strengtha/2.
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If the excited stateu1& in the left well is coupled resonantl
with amplitude2D/2 to a stateu2& in the right well that is
shifted in energy by« with respect tou1&, the total Hamil-
tonian for the flux dynamics in the basis of the three sta
u0&, u1&, andu2& is

H05S 0 a/2 0

a/2 n 2D/2

0 2D/2 n2«
D . ~22!

As in the previous section, the average flux tunneling r
t21 can be calculated according to Eq.~15! from the station-
ary density matrixr of the system in the basis of statesu0&,
u1&, and u2&. Time evolution ofr is described by the sam
Eq. ~7! but with the HamiltonianH0 given now by Eq.~22!.
We begin discussion of the dynamics of flux tunneling in t
three-state system~22! with the case when the interwell re
laxationg@r# can be neglected, and the only mechanism
the energy relaxation in the system is the intrawell relaxat
G@r#. This relaxation is characterized by the two ratesG1,2
of the transitions from the statesu1,2& into the lower energy
states of the left and right potential well, respectively~Fig.
3!. An obvious generalization of Eq.~8! for G@r# to the
three-state basis gives the off-diagonal part of Eq.~7! for the
time evolution ofr of the following form:

ṙ015~ in2G1/2!r011 ia~r002r11!/22 iDr02/2,

ṙ1252~ i«1~G11G2!/2!r121 iD~r222r11!/22 iar02/2,

ṙ025~ i ~n2«!2G2/2!r022 iar12/22 iDr01/2. ~23!

Equations~23! allow us to express the off-diagonal el
ments ofr in terms of the diagonal ones in the stationa
regime. Inserting the stationary values of the off-diago
elements into the equations for the diagonal elements

ṙ0052aIm r011G1r111G2r22,

ṙ115aIm r011DIm r122G1r11, ~24!

ṙ2252DIm r122G2r22,

we calculate the stationary probabilityr22
(0) and find the flux

tunneling rate~15!.
Equations~24! were written under the assumption that t

relaxation in the left well b rings the system out of the st
u1& directly into the ground stateu0&. Although this is strictly
true only in the case whenu1& is the first excited state in th
well, Eqs.~24! can be also used to calculate the average
tunneling rate in other situations. Indeed, when the rf sig
drives the system into the stateu1& that is not the first excited
state, the intermediate states in the left well that exist
tween the statesu0& and u1& are populated by the process
relaxation out ofu1&. If the flux tunneling out of these state
is neglected~similarly to tunneling out of the stateu0&), their
effect on the average tunneling rate can be accounted fo
inclusion of the occupation probabilities of these states in
normalization condition. Since these probabilities in the s
tionary regime are proportional to the stationary occupat
s

e

f
n

l

e

x
l

-

by
e
-
n

probabilityr11, this can be done through an additional fact
l in the normalization condition for the stateu0&, u1&, and
u2&:

r001lr111r2251. ~25!

To give an example, we can calculate the factorl assuming
that the left well is parabolic in the relevant energy rang
Then, the standard result for the linear relaxation of the h
monic oscillator ~see, e.g., Ref. 28! is that the oscillator
makes the transitions only between the nearest-neigh
states and that the transition rate from the stateum& into um
21& is proportional tom. This means that in the stationar
state rm21,m215mrm,m /(m21), and if the rf radiation
drives the system into thenth excited state of the left well
thenl5n(m51

n (1/m). To avoid extra parameters, howeve
we assume from now on that the stateu1& is the first excited
state in the left well, so thatl51.

Sufficiently compact analytical expressions for the tunn
ing rate can be obtained from Eqs.~23! and ~24! only in
certain limits. For example, for small rf amplitude and we
relaxation,a!G1,2!D, we get29

t215
G2a2D2

~2n2«2V!2~2n2«1V!214@G1~n2«!1G2n#2
.

~26!

Equation~26! describes two peaks~discussed in more detail
below! in the dependence of the tunneling rate on the det
ing n. The peaks are broadened by the relaxation, and t
positions correspond to the two eigenstates of the Ham
tonian~2!: n5(«6V)/2. Another expression for the tunne
ing rate can be obtained for large relaxation ratesG1,2
@a,D:

t215
G2a2D2

~4n21G1
2!@4~n2«!21G2

2#
. ~27!

Depending on the relation between the energy bias« and the
relaxation rates, the tunneling rate~27! as a function of de-
tuning n contains either one~for small «) or two separate
peaks~for large«). The peak positions in this case coincid
with the position of the energy levelsu1,2& localized in the
two wells.

For arbitrary parameters it is convenient to use the s
tionary solution of Eqs.~23! and ~24! to plot the tunneling
ratet21 numerically. To simplify the discussion, we assum
that the relaxation rates in the two wells are the same,G1
5G2[G. Figure 4 shows the dependence oft21 on detuning
n obtained in this way for several rf amplitudesa in the
regime of small relaxation rateG. The main qualitative fea-
ture of Fig. 4@that can also be seen in Eq.~26!# is that for
small a the resonant peak in the tunneling ratet is split into
two peaks due to coherent oscillations of flux between
two wells. The appearance of such splitting can be ea
understood, since a weak rf signal excites the system not
the stateu1& localized in the left well, but into the two hy
bridized states formed out of the statesu1& andu2& in the two
wells. The two different energies of the two hybridized sta
lead to the two peaks in the tunneling rate. This means
the splitting of the resonant-tunneling peak is the dir
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manifestation of the quantum coherent oscillations of fl
between the two wells of the SQUID potential.

Figure 4 illustrates also how the splitting of the reson
tunneling peak is suppressed with the increase of the rf
plitude. Suppression of the peak splitting can be underst
in terms of the time 1/D required to establish the stationa
states hybridized between the two wells. Large rf amplitu
a on the order of the tunnel amplitudeD causes rapid Rab
oscillation between the statesu0& andu1& and does not allow
for sufficient time to establish the two hybridized states. T
system is therefore effectively excited into the stateu1& lo-
calized in the left well, and single resonant tunneling pea
formed around the energy of this state. Broadening and s
pression of this single peak seen in Fig. 4 asa increases
beyondD, is a version of the generic ‘‘quantum Zeno’’ e
fect, when tunneling out of a metastable state is suppre
by rapid perturbation of this state.

Figure 5 shows the evolution of the coherently split tu
neling peaks at small rf amplitudea with the bias energy«
and with the relaxation rateG. We see that with increasin
energy bias@Fig. 5~a!#, the peaks follow the position of th
energy levels and the splitting between them increases
multaneously, the peak height decreases reflecting the o
all suppression of the tunneling rate as one moves away f
the resonance. Figure 5~b! shows how the double-peak stru
ture in the small-bias regime representing the coherent m
ing of the flux states in the two wells is suppressed by
creasing relaxation rateG. The structure is visible up to th
relaxation ratesG.0.5D.

The peaks in Fig. 5 are shown only for«>0. The peak
structure for negative« can be understood from the ‘‘sym
metry’’ relation t21(2n,2«)5t21(n,«) that can be de-
duced from Eqs.~23! and ~24!. Equations~23! show that in
the stationary regime, changing the sign ofn,« is equivalent
to changing the sign ofa,D and replacing the off-diagona
elements ofr with their complex conjugate values. Th
transformation obviously does not change the transition r
in Eq. ~24!, and therefore does not change the flux tunnel
ratet21.

Another interesting manifestation of the coherent flux tu
neling between the wells can be seen in the dependenc
the tunneling rate on the bias energy« at fixed detuningn
~Fig. 6!. For weak relaxation, the hybridized states are w
developed, and when the rf excitation energy lies betw

FIG. 4. The ratet21 of the photon-assisted resonant tunneli
of flux F between the two wells of the SQUID potential as a fun
tion of detuningn for several values of the rf amplitudea. For
discussion see the text.
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these two states, the tunneling rate is strongly suppresse
n50, when the system is excited precisely into the stateu1&
localized in the left well, this condition is satisfied and tu
neling rate is strongly suppressed for any energy bias«. As
can be seen from Eq.~26! and Fig. 6, in this case the tunne
ing rate as a function of« is described by a Lorentzian cen
tered around«50. In contrast to resonant tunneling peaks
the n dependence of the tunneling rate, which have sm
width proportional to the relaxation rateG, the width of this
Lorentzian is largeD2/G, and is inversely proportional toG.
When the detuningn deviates from zero, there is an energ
bias« at which the excitation energy coincides with the e
ergy of one of the hybridized states. The tunneling rate ha
peak under such resonance conditions. For not-too-smalln ’s,
this resonant peak again has a small width proportional toG.

-

FIG. 5. Evolution of the double-peak structure in the ratet21 of
the photon-assisted resonant flux tunneling as a function of de
ing n with increasing~a! bias energy« and ~b! relaxation rateG.

FIG. 6. Bias-energy dependence of the photon-assisted flux
neling rate at fixed detuningn for small rf amplitude and relaxation
rate G. For vanishing detuning, the tunneling rate exhibits a ve
broad maximum with a width inversely proportional toG.
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In Fig. 6, one can see how the transition between the br
and narrow tunneling peaks takes place forn>0. As before,
the results for negative detuning can be deduced from
relationt21(2n,2«)5t21(n,«).

It should be noted also that the fact that each curve in F
6 has only one peak of the tunneling ratet21 does not con-
tradict the experimental results22 which show double peak
structure in the dependence oft21 on the external fluxFe
through the SQUID loop, which controls the bias energy«.
The reason for this is that for experimental SQUID para
eterers, variations ofFe change not only« but the energy
separation of the states within the same well also, and th
fore affect the detuningn.

Finally, we discuss the effect of weak interwell relaxati
on the photon-assisted tunneling. We start by generaliz
Eq. ~9! for this relaxation to the three-state situation relev
for the photon-assisted tunneling. Under the natural assu
tion that the average flux in the statesu0& and u1& in the left
well of the SQUID potential is the same, the part of t
dissipative coupling~3! that corresponds to the interwell re
laxation is

V52I fdFS 1 0 0

0 1 0

0 0 21
D [2I fdFU. ~28!

While Eq. ~28! is written in the flux basisu0&,u1&,u2&, weak
relaxation is conveniently described in the basis of the eig
statesun& of the Hamiltonian~22!. In this basis, the contri-
bution of the interwell relaxation~28! to the evolution of the
density matrixr is given by the standard expression simi
to Eq. ~9!:

ṙnn5(
m

~gmnrmm2gnmrnn!, ~29!

ṙnm52Fgmn8 1
1

2 (
k

~gnk1gmk!Grnm , nÞm.

Transition and dephasing rates in these equations are

gnm5
guUnmu2~«n2«m!

12e2(«n2«m)/T
, gnm8 5

gT

2
~Unn2Umm!2,

whereUnm are the matrix elements of the operatorU ~28! in
the eigenstates basis, and«n is the energy of the eigensta
un&.

Interwell relaxation can be included into the evolutio
equations for the density matrix on the basis of Eq.~29!
numerically. We diagonalize the Hamiltonian~22!, calculate
the interwell relaxation terms~29! in the eigenstates basis
and transfer them into the flux basis, where the intraw
relaxation has the simple form~23!, ~24!. Calculating finally
the stationary value of the density matrixr we find the flux
tunneling rate~15!.

Figures 7 and 8 show results of such a calculation
tained at vanishing temperatureT. In Fig. 7, the tunneling
rate is plotted as a function of the detuningn for «50 and
several values of the relative strength of the intrawell rel
ation G. The eigenstates of the two-state Hamiltonian a«
50 are symmetric between the two wells, and in absenc
d

e
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the interwell relaxation produce two symmetric resonant t
neling peaks@see Figs. 4 and 5~a!#. As can be seen from Fig
7, the interwell relaxation makes the tunneling peaks asy
metric. The positive-n side of the double-peak structure co
responds to excitation of the system into the lower-ene
eigenstate and is unaffected by the interwell relaxation
zero temperature, since there is no energy in this regim
create additional tunneling path. In contrast, the negativn
side of the double-peak structure corresponds to excitatio
the system into the eigenstate with larger energy, and

FIG. 7. The ratet21 of the photon-assisted flux tunneling as
function of the detuningn in the case of symmetric coupling be
tween the tunneling flux states,«50, in the presence of both inter
well and intrawell relaxation. Different curves correspond to diffe
ent magnitudes of the intrawell relaxation rateG relative to the
interwell relaxation rate.

FIG. 8. The ratet21 of the photon-assisted flux tunneling as
function of the bias energy« for two ‘‘symmetric’’ values of the
detuningn and the same rates of the intrawell relaxationG as in
Fig. 7. In~a!, t21 decreases with increasingG for « above the peak,
while in ~b!, the peak height increases withG.
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interwell relaxation increases the rate of tunneling out of t
state. Because of this, the negative-n peak in Fig. 7 is larger
than the tunneling peak at positiven, and the tunneling rate
at n,0 decreases much more slowly away from the pe
than at positiven.

Interwell relaxation introduces asymmetry also in the d
pendence of the flux tunneling rate on the bias energy«.
Examples of such dependence are shown in Fig. 8 for
values of the detuning,n562D. In both cases, the tunnelin
rate has a resonant peak at«.n similar to the peaks shown
in Fig. 6 for vanishing interwell relaxation, when the pea
for the two values of detuning are symmetric. Comparison
Figs. 8~a! and 8~b! shows that the interwell relaxation make
the peaks asymmetric. In particular, the peak atn,0 is
smaller than the peak atn.0. Although this asymmetry ap
pears to be opposite to that in Fig. 7, where the negativn
peak is larger, it has the same origin as in Fig. 7. The pe
at n,0 andn.0 correspond to resonant excitation of t
system into, respectively, the upper and lower energy eig
states. When the resonance occurs foru«u.D, as in Fig. 8,
the eigenstates are already to a large extent localized in
or the other well. At«.n.0, the lower eigenstate is cen
tered in the right well and the interwell relaxation increas
the tunneling rate, while at«.n,0 the lower eigenstate i
centered in the left well and the interwell relaxation brin
the system back to this well suppressing the tunneling r
As a result, the resonant tunneling peak in Fig. 8~a! (n.0) is
larger than in Fig. 8~b! (n,0). The height of the negative-n
peak is more sensitive to the relative strength of the t
relaxation mechanisms and decreases with decreasing raG
of the intrawell relaxation.

The tails of the photon-assisted resonant peaks can
described analytically. When the bias energy and detun
are not close to any resonance,unu,u«u,un2«u@a,D both the
interwell tunneling and rf excitation can be treated as per
bations. The dynamics of flux tunneling in this regime can
described as a coexistence of the two tunneling paths sim
to the off-resonant tunneling discussed in Sec. II~see inset to
Fig. 2!. If n.«, the effective energyn2« of the stateu2& in
the right well@i.e., the energy of this state brought down
a quantum of rf radiation, as in the Hamiltonian~22!# is
above the energy of the initial stateu0& in the left well, and
the only energy-allowed tunneling path is direct relaxation
the right well out of the perturbed stateu0&. Similarly to Eq.
~17!, perturbation theory ina,D gives for the rateḠ of this
tunneling:

Ḡ5
G2a2D2

16n2~n2«!2
. ~30!

If n,«, the effective energy of the stateu2& is lower than the
energy of the stateu0&, and in addition to the tunneling~30!
there is a competing tunneling process. It consists of a t
sition between the perturbed statesu0& and u2& with the rate
ḡ,

ḡ5
ga2D2

4n2~«2n!
, ~31!
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that is driven by interwell relaxation, followed by direct re
laxation in the right well with the rateG2. As in Sec. II, the
coexistence of the two tunneling paths gives the followi
total tunneling rate:

t215G2

ḡ1Ḡ

ḡ1G2

. ~32!

One can check that Eqs.~30! and ~32! agree, respectively
with the negative-e tail of the resonant tunneling peak in Fig
8~b! and the positive-e tail of the peak in Fig. 8~a!.

In summary, we have studied the effects of two types
relaxation mechanisms on the macroscopic resonant tun
ing of flux in SQUID’s under stationary-bias conditions an
with external rf irradiation. Coherent splitting of th
resonant-tunneling peaks by rf radiation provides a con
nient way of studying quantum coherence of flux states.
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APPENDIX

In the Appendix we show explicitly how the Hamiltonia
of the two-well system~1! can be reduced at resonance to t
two-state form~2!, and derive an expression for the tunne
ing amplitudeD. Assuming that the transparencyD of the
barrier separating the two wells is small,D!1, and that the
resonance occurs between the states with largen, we can use
the WKB approximation for the wave functionsc jn(F) of
the Hamiltonian~1!. In this approximation, the wave func
tion between the right and the left turning pointsr and l is

c~F!5
A

Ap
cos@w~F!2d#, ~A1!

with the WKB phasew(F)5(1/\)* l
FdF8p(F8)2p/4 and

momentump52C@E2U(F)#1/2. In Eq. ~A1!, d is a con-
stant phase shift, andA is a normalization constant. Th
phasew is defined in such a way thatd50 for an isolated
well, when the wave function decays exponentially in t
classically inaccessible regionF.r ,F, l . When the two
wells are coupled, the energyE of the state common to them
deviates from the eigenenergies«n of the isolated wells that
are determined by the Bohr-Sommerfeld conditi
(1/\)* l

r pdF52p(n11/2). For weak tunneling, this devia
tion is small in comparison to the state energy, and creat
small but nonvanishing phase shiftd:

d5
1

\El

r

@p~E!2p~«n!#5p
E2«n

vp
, ~A2!

wherevp is the frequency of the classical oscillations in t
well which in the WKB approximation determines the spa
ing of the energy levels.

At nonvanishingd, the wave function~A1! has a part that
grows exponentially in the classically inaccessible region
one can see rewriting it as
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c5
Aeid

Ap
cosw~F!2

iA sind

Ap
eiw(F). ~A3!

According to general rules of the WKB approximation—se
e.g., Ref. 30, the two terms in this expression produce ex
nentially decaying and growing components of the wa
functions with the amplitudesAeid/2 and2A sind, respec-
tively. To find the energyE we need to match the amplitude
of the wave functions of the right and left wells in the barr
region. Under the conditions of resonance, equating the
plitudes and keeping only the terms of the first order inD we
get

A1

E2«1

v1
52A2

D

2p
, A2

E2«2

v2
52A1

D

2p
, ~A4!

where« j , j 51,2 are the energies of the resonant states,
D5exp$2(1/\)* r 1

l 2 upudF%.

The probability to be in the right/left well is directly re
lated to the wave function amplitudesAj :

E
l j

r j
dFuc j u25

BuAj u2

v j
, ~A5!

whereB is the j-independent part of the normalization co
stant. Introducing the amplitudesa of this probability,a j

5Aj /v j
1/2, we bring Eq.~A4! into the form that coincides

with the Schro¨dinger equation of the two-state system:

Ea15«1a12
D

2
a2 , Ea25«2a22

D

2
a1 , ~A6!
ro

e,

er

ys

. B
,
o-
e

-

d

with the tunneling amplitude

D5
~v1v2!1/2

p
D.

Since the resonant statesu1,2& are orthogonal to all othe
states of the full Hamiltonian~1!, this proves that their dy-
namics can be described by the Hamiltonian~2!.

Away from resonance, when«[«12«2;vp , one of the
amplitudesa ~for the states localized in the left well,a2) is
small,a2;D. Keeping, as before, only the terms of the fir
order in D, we see from Eq.~A6! that in this caseE15«1,
i.e., d150. Matching the growing wave function in the righ
well with the decaying wave function in the left well we fin
that away from the resonance

a25
pD

2v2sin~p«/v2!
. ~A7!

Equation~A7! extrapolates smoothly between the success
resonances.

Making use of the harmonic approximation for the pote
tial U(F), one can show that the results of this appen
@Eqs.~A6! and~A7!# can be extended to the low-lying state
with small n which cannot be described with the WKB ap
proximation. Such an extension leads only to minor mod
cations in the definition of the barrier transparencyD in these
equations.
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