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Abstract – We analyze the interference between tunneling paths that occurs for a spin system
with both fourth-order and second-order transverse anisotropy. Using an instanton approach, we
find that as the strength of the second-order transverse anisotropy is increased, the tunnel splitting
is modulated, with zeros occurring periodically. This effect results from the interference of four
tunneling paths connecting easy-axis spin orientations and occurs in the absence of any magnetic
field.
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Geometric-phase effects play an important role in spin
dynamics. Notably, a geometric phase lies at the heart
of spin-parity effects, such as Kramers degeneracy [1–3].
Tunneling of a spin (or magnetic particle) between degen-
erate orientations can be modulated by such geometric-
phase effects via the interference between multiple tunnel-
ing paths, with complete suppression (or “quenching”)
of the tunnel splitting occurring when tunneling paths
destructively interfere.
Garg has considered the case in which the tunneling of

a spin with biaxial anisotropy can be modulated by the
application of a magnetic field along the hard axis [4,5].
Specifically, he studied the Hamiltonian

H=D(J2− Ĵ2z )+E(Ĵ2x − Ĵ2y )−hxĴx, (1)

for spin J and anisotropy constants D>E > 0 and hx ≡
gµBHx. He showed periodic quenching of the tunnel
splitting as a function of magnetic field Hx due to
geometric-phase interference between tunneling paths.
Several extensions and variants of this problem have
been studied theoretically [5–18]. In a ground-breaking
experiment, Wernsdorfer and Sessoli [19] found clear
evidence of this effect in the single-molecule magnet Fe8,
which is reasonably well described by eq. (1).
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The case originally studied by Garg involved no
magnetic field along the longitudinal (z) direction.
Tunneling can occur between the metastable ground state
|J〉 and an excited state | −J +n〉 when the applied field
brings them into resonance, i.e., when hz ≡ gµBHz = nD,
n= 0, 1, 2, . . . , 2J − 1 [20]. In Fe8, it was discovered
that at these resonance longitudinal fields, a transverse
field along the hard axis continued to produce interfer-
ence effects [19]. Thus, at certain values of hz and hx,
destructive interference occurs, suppressing tunneling.
These so-called diabolical points in hz-hx parameter
space have been studied theoretically by several authors
using different approaches [5–7,10,11,15,17].
The Mn12 single-molecule magnet has a fourfold trans-

verse magnetic anisotropy and, like Fe8, displays resonant
tunneling between two easy-axis orientations [20]. One
variant of this molecule, Mn12-tBuAc, appears to display
the fourfold symmetry with high accuracy [21–23]. Here
we consider the interference that occurs between tunnel-
ing paths in such a system and how that interference can
be modified by the presence of a second-order transverse
anisotropy perturbation. Such a perturbation could poten-
tially be induced by the application of uniaxial pressure
to a sample of Mn12. We find that the tunnel splitting
is periodically quenched as a function of the strength of
the perturbation. This interference effect takes place in
the absence of any magnetic field. In addition, we find a
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pattern of diabolical points in parameter space when a
longitudinal field hz is applied.
Several investigations have studied the inclusion of a

fourth-order transverse anisotropy as a perturbation in
eq. (1) that affects the number and positions of quenches
produced by the external field [5,11,16,17,19]. Other work
has studied how a transverse magnetic field modulates
the interference among the four tunneling paths defined
by a fourth-order transverse anisotropy [12,13]. In the
present study the fourth-order anisotropy term is the
primary transverse anisotropy in the problem, producing
four interfering paths, but the interference is modulated
by the strength of the second-order anisotropy, leading to
periodic quenches as that term is varied. In particular, we
consider a spin governed by the Hamiltonian

H=D
(

J2− Ĵ2z
)

+ k
(

Ĵ4++ Ĵ
4
−

)

+λ
(

Ĵ2x − Ĵ2y
)

, (2)

where the Ĵ ’s are standard spin operators. We restrict the
values of k and λ such that the z axis is the spin’s easy
axis (see appendix).
We calculate the ground-state tunnel splitting using an

instanton approach, valid in the semi-classical limit of
large J . Since we are considering tunneling between energy
minima, there can be no classical trajectories connecting
the endpoints of the motion. The quantum trajectories
with the largest amplitude are the instantons, obtained
from the Euclidean (imaginary-time) Lagrangian

LE =L(t→−iτ) = iJ (cos θ− 1)
dφ

dτ
−H(θ, φ), (3)

where H(θ, φ), the Hamiltonian expressed in terms of
spherical angles, is identified with the spin’s classical
energy Ecl(θ, φ) defined in eq. (6) below. Since the instan-
ton paths are extrema of the action in imaginary time,
the total energy must be a conserved quantity along each
path.
The ground-state (zero-temperature) tunneling rate is

given by

∆=
∑

i

γi e
−SE,i , (4)

where the sum is over all instantons and the pre-factors
γi arise from integrating the fluctuations around the
instanton paths [24]. The Euclidean action SE for an
instanton path is

SE = −
∫ τf

τi

LEdτ

= iJ

∫ φ(+∞)

φ(−∞)
(1− cos θ)dφ+

∫ τf

τi

H(θ, φ)dτ. (5)

The first term has the form of a Berry phase: The
difference in the imaginary part of the action between two
paths is proportional to the real part of the solid angle
(on the complexified unit sphere) circumscribed by the
two paths. Since the last term is the total energy, it is a

a)  λ = 0 b)    λ = 0.2

Fig. 1: (Color online) Three-dimensional plot of energy land-
scape for a spin governed by eq. (6) with a≡ kJ2 = 0.1 and
λ= 0 (a) or λ= 0.2 (b). The energy minima are along the z
axis (into and out of the page) while the x and y axes are the
hard axes. The solid red curves show the four instanton paths
with only the real parts of θ and φ displayed. These paths were
numerically calculated using eqs. (7) and (10). A rather large
value of a is used here to ease visual representation. For Mn12,
a≈ 3× 10−3.

constant for an instanton path and, by construction, zero
for the Hamiltonian, eq. (2).
For the case of eq. (2), the spin dynamics can be under-

stood in terms of four instanton paths along the complex-
ified unit sphere. When λ= 0, the spin’s energy has four
saddle points located in the x-y plane, with instanton
paths connecting the +z and−z directions virtually “pass-
ing through” these saddle points, as shown in fig. 1(a),
where the solid red curves show numerically calculated
instanton paths with only the real parts of θ and φ being
displayed. For λ> 0, the energy landscape is changed, as
shown in fig. 1(b), and the instanton paths are pulled
toward the y axis. Reflection symmetry in the x-z and
y-z planes requires that all four paths have the same
amplitude, but each has a different geometric phase that
leads to interference. We therefore concern ourselves with
calculating the imaginary part of the action. The inter-
ference effect can be understood by considering, say, the
top two paths in fig. 1. The solid angle between these
paths decreases with increasing λ, modulating the inter-
ference between their tunneling amplitudes. An identical
effect occurs for the bottom two paths.
For ease of computation we measure energy in units of
D (i.e., we set D= 1). We choose slightly unconventional
spherical coordinates, with the polar angle θ measured
from the x axis and the azimuthal angle φ measured
from the y axis to avoid having coordinate singularities
at the poles. In terms of these angles, the classical energy
associated with eq. (2) is

Ecl(θ, φ) = J
2(1− sin2 θ sin2 φ)
+λJ2(cos2 θ− sin2 θ cos2 φ)
+2kJ4(cos4 θ+sin4 θ cos4 φ

−6 cos2 θ sin2 θ cos2 φ), (6)

which has two degenerate absolute minima (with Ecl = 0)
at θ= π/2, φ=±π/2.
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Fig. 2: (Color online) Instanton contour in the complex-φ plane
for a= 10−4 and λ= 0. Branch points and branch cuts are
shown. The contour changes only slightly as a is varied by
orders of magnitude.

We can quickly gain a large amount of information
about the instantons by solving eq. (6) for the θ(φ) paths
that conserve energy. Making the substitution p= J cos θ,
the conjugate momentum to φ, the instantons must satisfy
the constraint Ecl = 0, which has four solutions:

p±,±(φ) =±J

√

A(φ)± i
√

B(φ)

C(φ)
, (7)

where the subscripts refer to the choices of signs and

A(φ) = 4a cos4 φ+12a cos2 φ− sin2 φ−λ cos2 φ−λ,
B(φ) = −

(

128a2+16a(λ− 2)+ (λ− 1)2
)

cos4 φ

+2
(

1−λ2+8a(λ+2)
)

cos2 φ− (λ+1)2,
C(φ) = 4a(cos4 φ+6 cos2 φ+1), (8)

with a≡ kJ2.
Two of the solutions in eq. (7), p±,+, do not have

values of p= 0 at the endpoints φ=±π/2. While such
“boundary-jump instantons” [11] are allowed solutions,
numerical evaluation of these solutions shows that their
action is much larger than for the other two solutions and
therefore they give negligible contribution to the tunnel
splitting. We neglect them in further discussion.
The other solutions p±,− for 0<a< 1/2 and |λ|<λc ≡

4
√
a− 2a2 have four branch points along the real-φ axis at

φ=±π/2 and at the zeros of B(φ). Evaluating the action
along the real-φ axis is then potentially problematic and
the integration contour must be chosen with some care. A
judicious choice of branch cuts is shown in fig. 2. We find
the instanton trajectories by considering the (imaginary)
time dependence of the coordinates.
The equations of motion for the variables φ and p can

be found using Hamilton’s equations:

φ̇ = −2i Jp(4ap2+J2 sin2 φ+λJ2(1+ cos2 φ)
+12a(2p2−J2) cos2 φ+4a(J2− p2) cos4 φ)/J2, (9)

Table 1: Instanton actions: the upper bound −π/2 vs. 3π/2 is
intended to convey whether the instanton runs through 0 or π.

Instanton Euclidean action

1 iJ
∫ −π/2
π/2

(1− p+,−(φ))dφ
2 iJ

∫ 3π/2

π/2
(1− p−,−(φ))dφ

3 iJ
∫ −π/2
π/2

(1− p∗−,−(φ))dφ
4 iJ

∫ 3π/2

π/2
(1− p∗+,−(φ))dφ

ṗ = −i sin(2φ)(J2− p2)(2a(J2− 7p2)+J2(1−λ)
+2a(J2− p2) cos(2φ))/J2. (10)

Equation (9) can be decoupled by substituting one of
the solutions p±,− for p. The equation can then be
solved numerically to find the real and imaginary parts
of φ(τ). For each choice of p±,−, we find two solutions:
one with endpoints at φ=±π/2 (passing through φ= 0)
and the other with endpoints φ= π/2 and 3π/2 (passing
through φ= π) (see footnote 1). Four more solutions can
be found by noting that eqs. (9) and (10) are invariant
under the transformation (φ→−φ∗, p→ p∗) followed by
complex conjugation of the equations. This yields a total
of eight solutions, four of which are instantons and four
anti-instantons. These can be sorted by using eq. (9) to
determine the sign of φ̇ at the midpoint of each solution.
Table 1 indicates the Euclidean action integrals for the
four instantons, with the limits designating the direction
of the path about the polar axis.
By symmetry, only one of these integrals need actually

be evaluated. The contour in the complex-φ plane asso-
ciated with one of these solutions (Instanton 1) is shown
in fig. 2. That the contour begins and ends at a branch
point poses no complications since the integrand vanishes
smoothly at those points. With the branch cuts shown,
the contour can be continuously deformed onto (or within
ε of) the real-φ axis. Along this axis, the real part of p±,−
(the part we are interested in) is only non-zero between
the inner two branch points. The imaginary part of the
Euclidean action (for Instanton 1) can then be written as

SI =−J(π+ I),

I =
1

J

∫ −b

b

Re [p+,−(φ)] dφ,
(11)

where ±b are the positions of the inner branch points.
Proceeding similarly for the other instantons, the total
tunnel splitting can be calculated using eq. (4):

∆(λ) ∝ e−SR
[

e−iJπ
(

e−iJI + eiJI
)

+eiJπ
(

e−iJI + eiJI
)]

= 4e−SR cos (Jπ) cos (JI) , (12)

1While our numerical calculations show that each is a solution,

we have not proven that these are the only solutions. However, we do

not expect more than four instanton solutions with equal magnitude

actions given the symmetry of the problem.
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where SR is the real part of the Euclidean action and
the same for all instantons. The factor cos(Jπ) ensures
that the tunnel splitting is zero for half-integer spin, in
accordance with Kramers’ theorem [1,2]. It arises from
the interference between diametrically opposite paths
(fig. 1) that remains constructive (destructive) for integer
(half-integer) values of J as λ is varied. The cos(JI)
factor is of chief concern here. Since the integral I
depends on anisotropy parameters a and λ, variations in
these parameters can modulate the tunnel splitting, with
complete suppression of tunneling when JI = (2n+1)π/2
for integer n. For fixed a, as λ is increased from zero,
the inner branch points move towards each other and the
value of I decreases, resulting in repeated suppression of
tunneling until λ= λc ≡ 4

√
a− 2a2 at which point b= 0

and the value of I goes to zero.
An approximate expression for I can be obtained by

treating the integrand as a function of two independent
parameters (a and λ/λc) and expanding in a power series
in a. The resulting integrals can be done by elementary
means. We obtain

I =
π

2

(

1− λ
λc

)

g (a, λ) , (13)

where, up to order a2,

g (a, λ) = 1+
λ

λc

(

1+
λ

λc

)

×
(

3a

2
− a

2

16

(

9− 133
(

λ

λc

)2
))

. (14)

Figure 3 compares the results of eqs. (13) and (14) (solid
blue curve) to exact numerical evaluation of I (points) for

a= 2−
√
2

8 ≈ 0.073, the largest value of a for which I can
be meaningfully evaluated for all λ< λc (see appendix).
Even at this relatively large value for a, eq. (13) is clearly
an excellent approximate expression for I, although for
such large values of a and λ the instanton approximation
is questionable since the barrier has nearly disappeared.
The λ-dependence of I is clearly dominated by the (1−
λ
λc
) factor in eq. (13), responsible for the nearly linear

behavior seen in the figure. To illustrate the geometric
interference effect, the figure also shows the behavior of
the magnitude of the cos(JI) factor in ∆ as a function
of λ (red dashed curve) for J = 10. We note that when J
is an odd integer, the zeros in ∆ start at λ= 0 (because
I = π/2 at this point), as expected by general symmetry
considerations [2]. Since the argument of cos(JI) ranges
from zero to Jπ/2, the number of zeros is ⌊(J +1)/2⌋.
We next investigated the effect of a longitudinal field on

the geometric-phase interference. Such a field introduces a
term −hzSz into the Hamiltonian, breaking the symmetry
between up and down directions of spin (i.e., raising the
energy of one minimum with respect to the other) but
preserving other rotational and reflection symmetries. In

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

λ/λ
c

I
,

π /
| 

|)I J(s
oc

Fig. 3: (Color online) I/π (blue, solid curve and points) and

|cos(JI)| (red, dashed) as a function of λ/λc for a=
2−
√

2
8
and

J = 10. The points are the result of numerical evaluation of I
whereas the solid blue curve is obtained using eq. (13). The
value of a used is the largest one for which the problem is well
defined for all values of λ< λc (see appendix).

particular, the four instanton paths maintain the same
amplitude and will continue to interfere.
Similar to what was found for the biaxial spin, we

determined that a spin described by eq. (2) has an array
of diabolical points. At certain values of longitudinal field,
varying λ causes the tunnel splitting to oscillate, with
perfect degeneracies occurring at a discrete set of points
in λ-hz space. The effect can be most readily addressed
by invoking the argument of Bruno [17] that tunneling
between |J〉 and | −J +n〉 can be mapped approximately
onto the problem of tunneling between the ground states
|J̃〉 and | − J̃〉 of an effective spin J̃ = J −n/2 in zero
magnetic field. Making the substitution J→ J̃ in eqs. (12)
and (13) and keeping in mind that both a and λc are
functions of J , we can generate the full set of diabolical
points. If a is small, we can approximate g(a, λ)≈ 1 and
get the following simple expressions for the diabolical
points:

hz = nD,

λ= 4
√

kD− 2(kJ̃)2[J̃ − 2l− 1],
(15)

where l= 0, 1, . . . , ⌊(J̃ − 1)/2⌋ and n is an even (odd)
integer when J is a (half-)integer. For other integer values
of n, eq. (12) yields exactly zero tunnel splitting for all
values of λ, as expected in the absence of a transverse
field. In these expressions, we have restored the anisotropy
parameter D. The first expression is equivalent to the
condition for resonant tunneling [20] in which the ground
state associated with the up direction is resonant with the
n-th excited state in the down direction. Figure 4 shows
a comparison between the results of eq. (15) and exact
numerical diagonalization of the Hamiltonian using J = 10
and k/D= 2× 10−5, a value close to that of Mn12. The
agreement is obviously very good.
We note that the pattern of diabolical points in fig. 4

resembles the pattern found in the biaxial system [5–7,
10,11,15,17], where the diabolical points lie on a perfect
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Fig. 4: (Color online) Diabolical points in λ-hz parameter
space with k= 2× 10−5D and J = 10 (i.e., Mn12) calculated
using eq. (15) (squares) and by exact diagonalization of the
Hamiltonian (×’s). Points at negative values of hz and λ were
obtained by reflection in the horizontal and/or vertical axis.

lattice in hx-hz space. In contrast, the diabolical points in
fig. 4 lie in the λ-hz plane and only form a perfect lattice
in the limit of k→ 0.
Finally, we consider the feasibility of observing the

proposed effect. For Mn12Ac, a≈ 3× 10−3, which gives
λc ≈ 0.2D= 0.11K. Density functional calculations that
include molecules of solvation in a trans configuration
estimate that a 3% strain along the axis defined by the
solvent molecules can produce changes in λ as large as
19 mK [25]. To the best of our knowledge, the elastic
modulus of Mn12Ac has not been measured, but it is
unlikely that it could be much larger than 100 kbar. One
might then need uniaxial pressure as high as 17 kbar to
reach λc, although the interference effect would manifest
at substantially lower values of λ. Several experimental
studies have investigated the effect of hydrostatic pres-
sure on Mn12 [26–29] and have found significant changes
in D with pressures as high as 12 kbar. None of these
investigations involved uniaxial pressure, which would be
needed to observe the interference effect predicted herein.
We note that the ground-state tunnel splitting for Mn12Ac
is extremely small. However, the splitting increases expo-
nentially for progressively higher levels, suggesting that a
pressure-induced effect would be observable in thermally
excited states, i.e., by studying the magnetic relaxation
in the thermally assisted tunneling regime [20] as a func-
tion of pressure. Discussion of the geometric-phase effect
in excited levels will be presented elsewhere.
In summary, we predict a geometric-phase interfer-

ence effect involving four instanton paths that can be
modulated by the strength of the second-order transverse
anisotropy, leading to a nearly periodic suppression of
tunneling in the absence of any external field. In principle,
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Fig. 5: (Color online) Parameter-space plot indicating the
essential features of the spin’s energy landscape. The unshaded
region represents the locus of parameters to which the analysis
in this paper applies. In the shaded region on the right, the
saddle points on the equator have become local minima. In
the shaded region above λ= 1, the minima at the poles have
bifurcated. The dashed line indicates where equatorial saddle
points merge pairwise. The solid curve shows the behavior of
λc and is included for reference.

this effect can be experimentally realized through the
application of uniaxial stress along one of the hard-axis
directions of a fourfold symmetric single-molecule magnet,
such as Mn12.
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Appendix

Here, we discuss how the energy landscape for a spin
governed by eq. (6) depends on the anisotropy parame-
ters a and λ. (As in the main text, we measure these
anisotropy parameters in units of D and define a≡ kJ2.)
Using standard techniques from multivariable calculus we
determined the minima, maxima and saddle points of the
landscape.
For small values of a and λ (unshaded region in fig. 5),

the landscape resembles that shown in fig. 1 with global
minima at the poles (±z directions) and saddle points
along the equator (x-y plane). As a increases, the saddle
points become deeper and for a> 1/4 the saddle points
transform into local minima on the equator (right shaded
region in fig. 5). This limit is far from relevant for Mn12,
where a≈ 3× 10−3.
Increasing λ causes pairs of saddle points on the equator

to move toward each other (see fig. 1). They merge
together when λ= 8a (dashed line in fig. 5). Remarkably,
even when there are only two saddle points in the potential
landscape, there remain four distinct instanton paths. The
solid angle between pairs of paths vanishes when λ= λc
(solid curve), which does not correspond to any notable
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change in the energy landscape. The vertical dashed line
represents the values in this parameter space used for the
results presented in fig. 3, i.e., a is such that λc = 1.
Finally, when λ> 1 each energy minimum at a pole

bifurcates into two minima, one tilted toward the +y
direction and the other toward the −y direction. This
substantially changes the nature of the problem. The
analysis described in this paper applies only to the
unshaded region in fig. 5 and would need modification to
handle the energy landscapes corresponding to the shaded
regions.
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