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We study the magnetic relaxation rate I" of the single-molecule magnet Mn;,-fBuAc as a function of the
magnetic field component Hy transverse to the molecule’s easy axis. When the spin is near a magnetic
quantum tunneling resonance, we find that I" increases abruptly at certain values of Hy. These increases
are observed just beyond values of H; at which a geometric-phase interference effect suppresses tunneling
between two excited energy levels. The effect is washed out by rotating H; away from the spin’s hard
axis, thereby suppressing the interference effect. Detailed numerical calculations of I' using the known
spin Hamiltonian accurately reproduce the observed behavior. These results are the first experimental
evidence for geometric-phase interference in a single-molecule magnet with true fourfold symmetry.
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Geometric-phase effects are responsible for many
fascinating phenomena in classical and quantum physics
from how a cat rights itself while in free fall to the
dynamics of charged particles in electromagnetic fields,
e.g., the Aharonov-Bohm effect [1]. One formulation of
geometric-phase effects involves a path-integral approach
in which the interference of paths is modulated by the
geometric phase difference between the paths [2-5].
Such interference effects can reveal the underlying sym-
metries of the system’s Hamiltonian. The dynamics of
spins provide a natural way to explore quantum geometric
phases for, as Berry showed in his pioneering work [6],
a system near a degeneracy point can be mapped onto a
spin in an effective magnetic field.

Single-molecule magnets (SMMs) are an ideal test bed
for exploring spin geometric-phase interference. In these
systems, each molecule behaves as a large spin with a
well-defined Hamiltonian determined by the symmetry of
the molecule and its environment [7]. The interactions
between molecules in a crystal are typically weak and
the sample behaves as an ensemble of nominally identical
large-spin objects. In many SMMs, the spins have a large
anisotropy barrier separating the preferred ‘“up” and
“down” directions. This leads to hysteresis and slow re-
laxation between these easy-axis directions. A geometric-
phase effect can lead to interference between tunneling
paths, thus modulating the rate at which spins flip direc-
tion. In a ground-breaking experiment, Wernsdorfer and
Sessoli [8] found oscillations in the probability of magne-
tization tunneling as a field applied along the hard axis
modulated the interference between two tunneling paths.
This observation confirmed a theoretical prediction by
Garg [4] and ignited intense theoretical study of related
phenomena [9-17]. Geometric-phase interference between
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tunneling paths has been observed in other SMMs that
have effective twofold symmetry, where tunneling involves
the interference between two equal-amplitude paths [18].
It has also been seen in antiferromagnetic molecular
wheels [19] and in SMM dimers [20,21]. Such interference
effects in the bellwether SMM Mn;,Ac are complicated by
the presence of solvent disorder [22], which breaks the
SMM'’s nominal fourfold symmetry, resulting in a compe-
tition between second-order and fourth-order anisotropies
[23,24]. Here we report the observation of a geometric-
phase interference effect in [Mn;,0,,(0,CCH,-'Bu);q
(CH30H),] - CH;0H (hereafter Mn;,-rBuAc), a variant
of Mn|,Ac that is free of solvent disorder and main-
tains its fourfold rotational symmetry [25-29]. Unlike
previous observations of geometric-phase interference,
which involved ground-state tunneling, the interference
effect described herein is observed in the thermally assisted
tunneling regime where tunneling takes place near the top
of the barrier. The interference effect provides a fingerprint
that affords an unprecedented ability to clearly identify
which levels participate in the thermally assisted process.

In 2002, Park and Garg [30] and, independently, Kim
[31], predicted that an interference effect should be
observed in SMMs with fourth-order transverse anisotropy,
described by the Hamiltonian

H = —DS?+(C/2)(S% + S*) —gupS-H, (1)

where S. = S, *iS,. In zero field, such a spin system
has the classical energy landscape shown in the left inset
of Fig. 1. Applying a magnetic field Hy along one of the
four hard directions (*x and *y for C > 0) preserves
reflection symmetry through the z-hard plane, allowing
interference between equal-amplitude tunneling paths
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FIG. 1 (color online). Measured magnetic relaxation rate as a
function of longitudinal field near the zero-field resonance for
several values of transverse field (Hy) from 1.0 to 6.8 kOe in
200 Oe increments. The data were taken from sample A at
3.10 K. The green boxes indicate regions where curves for
different values of H; tend to bunch together. The left inset
shows the classical energy landscape in a spherical polar plot
for a spin described by Eq. (1). The z axis is the easy axis
(energy minima) while the x and y axes are the hard axes
(maxima). The value of C has been greatly exaggerated to
make the fourfold symmetry evident. The right inset shows a
schematic of the apparatus, illustrating control of angles 6 and
¢. 1 is normal to detector plane; i is a hard axis direction.

that virtually pass through the saddle points in the land-
scape. This interference induces oscillations in the tunnel-
ing probability as a function of Hy. Mn,-fBuAc is
reasonably well described by the above Hamiltonian with
the addition of sixth-order terms consistent with fourfold
symmetry [27]:

H = —DS? — AS? — A'SS + (C/2)(S% + §*)
+ (C'/2)[S2(S% + 5%) + H.c]
- /‘LB[ngsz + gl(Sx Ccos ¢ + Sy sin ¢)HT]r (2)

where D = 0.568 K, A = 0.69 mK, A’ =3.3 uK, C=
50 uK, "= —-0.79 uK, g. =2.00, and g, = 1.93. H,
is the longitudinal component of the magnetic field, and ¢
measures the angle between Hy and the x axis. Much of
the system’s dynamics can be understood in terms of the
double-well potential shown in the inset of Fig. 2(a), which
shows the system’s energy as a function of the angle
between the spin vector and the easy axis (z) direction.
The spin has 25 + 1 energy levels, which are approximate
eigenstates of S.. H, tilts the potential and at certain values,
levels in opposite wells align, allowing resonant tunneling
between wells that results in a marked increase in the
magnetic relaxation rate. The fourth and fifth terms in
Eq. (2) as well as H; break the commutation of FH
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FIG. 2 (color online). (a) Relaxation rate as a function of
transverse field at H, = 0 and H, = —400 Oe, taken from the
data shown in Fig. 1. The solid curves are the results of simula-
tions of the relaxation rate using Eq. (2) with ¢ = 7°, as
described in the text. The inset shows the double-well potential
for the n = O tunneling resonance. (b) Calculated tunnel splitting
for energy-level pairs m = *2, m = *3, and m = *4, as
indicated, for ¢ = 0 (solid lines) and ¢ = 45° (dashed lines).
The dotted horizontal line marks a threshold splitting at which the
system makes a transition from one dominant pair of tunneling
levels to another. The dotted vertical lines show the transverse
field at which this transition occurs and its correspondence to the
observed rapid increases in the relaxation rate. Inset: Probability
current diagram for high-lying energy levels at Hy = 4.8 kOe.
The numerical labels indicate the expectation values of S, for the
corresponding energy level; the opacity of the arrows indicates
the magnitude of the associated current.

and S,, thereby inducing tunneling. The tunnel splitting
between nearly degenerate states is readily calculated
by diagonalizing Eq. (2). The solid lines in Fig. 2(b), for
¢ =0 (mod 90°), show that destructive interference
between tunneling paths induces a dramatic suppression
(““quenching”) of tunneling at discrete values of Hy for
each pair of levels [32]. (Here and below, we label each
state by m, its value of (S_) in the absence of tunneling.)
The interference effect is largely destroyed when ¢ is
increased towards 45° (dashed lines) since Hy then favors
one tunneling path over others. The tunneling quenching
affects which levels are involved in the magnetic relaxation
process, as evidenced by our data.

Crystals of Mn,-tBuAc were synthesized according
to published procedures [29]. A sample was mounted
adjacent to a Hall sensor that was in turn mounted on a
rotator probe. A reference sensor on the same chip was
used to measure background signals. Signals from the two
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sensors were subtracted with an analog circuit. We per-
formed extensive measurements on two samples (A and B).
Measurements of sample B were performed using a modi-
fied apparatus (Fig. 1 right inset) in which the orientation
of both the sample’s easy and hard axes relative to the
field could be adjusted (the latter ex situ by ~ = 35°).
Measurements were performed as follows. The sample
was rotated to align its easy axis with the external magnetic
field, magnetizing the sample, i.e., populating one of the
wells in the inset of Fig. 2(a). Next, the sample was rotated
to an orientation that produced the desired values of H, and
H7. The subsequent time dependence of the magnetization
was monitored and fit to an exponential decay to extract
the relaxation rate, I'. Proceeding this way, we obtained
values for I as a function of H, and H; and of temperature
T for relaxation near a tunneling resonance.

Some data from sample A are shown in Fig. 1, where I is
plotted as a function of H, for several values of Hp at
T = 3.10 K. For each value of Hy, I' exhibits a roughly
Lorentzian dependence on H,, peaked at H, = 0, where
tunneling is maximum. I" generally increases with increasing
Hy as the tunneling rate is enhanced and, in tandem, the
effective energy barrier is reduced [33]. We note that for some
regions of Hy and H, (green boxes) the data are bunched—
the relaxation rate changes very little with increasing Hy.
The effect is much more pronounced in the shoulders of the
peak than near its center. Figure 2 shows I as a function of Hy
for H, = 0 (upper four data sets, from peak center in Fig. 1)
and H, = —400 Oe (lower four data sets, from peak
shoulders). All sets show a roughly exponential increase in
I' with Hy. In addition, I' exhibits steps and plateaus (the
latter corresponding to the bunching in Fig. 1). These are
far more apparent in the H, = —400 Oe data. Each step
corresponds to a transition from one dominant pair of tunnel-
ing levels (e.g., m = *£3) to another (e.g., m = *4).
Interestingly, theoretical calculations of these transitions for
C = (' = 0 predict that the transitions should be indepen-
dent of ¢ and more pronounced on resonance (H, = 0) than
away from resonance [34,35], in contrast to our results.
Structure near H, = 0, where I" depends strongly on H._,
may be washed out by inhomogeneous dipole fields. More
importantly, the structure observed near H, = —400 Oe
(where T is less sensitive to dipole fields) is much more
pronounced than predicted by the simple model. Including
the experimentally determined values of C and C’ in Eq. (2)
induces the tunneling suppression shown in Fig. 2(b). These
tunnel quenches, in turn, give rise to the steps in I'.

To illustrate this, Fig. 2(b) contains a horizontal dotted
line—an empirically determined ““tunnel threshold.” When
the tunnel splitting for a particular pair of levels approaches
this threshold, tunneling for that pair begins to become the
dominant relaxation mechanism [33,34,36,37]. For ex-
ample, at Hy ~ 4.2 kOe (marked by the red vertical dotted
line), the tunnel splitting for m = *3 reaches the threshold
and tunneling between these levels begins to dominate over
relaxation through higher levels. This additional relaxation
mechanism produces the rapid increase in I' near this field.

Similar transitions occur when other pairs of levels reach
the threshold, marked by the other dotted vertical lines in
the figure. The tunneling suppression effect plays a crucial
role here: it determines how rapidly the threshold is crossed
as Hp increases. The slope of the tunnel splittings curves in
Fig. 2(b) is rather steep in the vicinity of the threshold right
after a quench for ¢ = 0. In contrast, when ¢ = 45°, the
tunnel splitting quenches are absent and the tunnel split-
tings cross the threshold more gradually, making each
transition so broad that it overlaps with others so that its
observability is washed out.

This effect is demonstrated in Fig. 3. The inset of the
figure shows I' as a function of H; for sample B in
the vicinity of one of the transitions for several values of
¢’ = ¢ + Py, where ¢’ is the experimental azimuthal
angle of the rotator’s second stage and ¢ is a constant
offset representing the orientation of the sample’s hard axis
(see Fig. 1 right inset). The data features for sample B were
less distinct than for sample A, possibly because B was
measured more than a year after synthesis. To enhance
clarity, we divided the data by e%3#1/k0¢ where the coef-
ficient 0.3 was chosen empirically. The resulting data are
presented in the main figure. For ¢’ = 2° and 20°, the
sharp transition at ~8 kOe is apparent while it is clearly
suppressed for values of ¢’ outside this range. These results
suggest ¢y ~ 9°, implying that the hard axes for the
m = 2-4 levels are roughly parallel with the a and b
crystallographic axes of the cuboid-shaped crystals [38].

We also studied the relaxation rate near the n =1
(H, ~ 4.5 kOe) resonance. We examined sample B with
¢’ = 2° with H, ~ 1 kOe below the resonance peak. Again
we see steps in the relaxation rate as a function of Hy, as
shown in Fig. 4(a). (Like in Fig. 3, we have removed an
exponential background for clarity.) The steps here also
correspond to the transitions between dominant tunneling
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FIG. 3 (color online). Relaxation rate from sample B as a
function of transverse field for several different values of ¢’
for H, = —500 Oe. The inset shows the raw relaxation rate
while the main figure shows the same data after dividing by an
exponential function to enhance clarity.
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FIG. 4 (color online). (a) Relaxation rate (after dividing by an
exponential to enhance presentation) as a function of Hy for H,
near the n = 1 resonance. Data was taken from sample B with
experimental azimuthal angle ¢’ = 2° and H, set to 1 kOe less
than the peak of the resonance. (b) Simulations of relaxation rate
as a function of transverse field using Eqgs. (2)—(4) with ¢ = 7°.
The inset shows the double-well potential forthe n = 1 resonance.
(c) Tunnel splitting calculations with ¢p = 0° for the m = —2, 3
and m = —3, 4 energy-level pairs, as indicated. The dotted
horizontal line represents a tunneling threshold while the dotted
vertical lines correspond to the transverse fields at which abrupt
transitions in relaxation rate occur.

level pairs, as illustrated in Fig. 4(c), each occurring when the
tunnel splitting for a particular pair rapidly crosses a thresh-
old value (horizontal dotted line) in the wake of a quench.
We performed numerical calculations of I" using a master
equation approach [34,35,37,39—41] to treat spin-phonon
interactions. For calculational ease, we used the spin’s
energy eigenbasis, which incorporates tunneling effects
automatically since the eigenstates of Eq. (2) are super-
positions of S, eigenstates. We neglect off-diagonal ele-
ments in the density matrix, a good approximation since our
experiments were done away from the exact resonance
conditions where such elements are appreciable. The mas-
ter equation governing the population of each level, p;, is

dn 21
% =3 -+ v+ O +¥Dp. 3
=1

i#j
The phonon transition rates are given by [34,42]

(@) p2
K
7 = s PASN(A,)), (4)

6mpcit

where SS) = (il{S,, S.}lj) and sg) = (i|$? — $%|j) and
A;; =¢&; — &, with g; the energy of level [i). N(A) =
(eA/kT — 1)~ s the phonon thermal distribution function,
p = 1.356 X 103 kg/m? is the mass density [27], and c, is
the transverse speed of sound. k) =1 and @ is a
constant of order unity representing the strength of the
associated spin-phonon coupling mechanism [43]. We
neglect possible collective spin-phonon interactions [46].

We calculated I' by finding the slowest nonzero
eigenvalue of the rate matrix implicit in Eq. (3). The calcu-
lated rates are fit to the data in Fig. 2, allowing c,, k@, C,
and C’ to be unconstrained parameters. The remaining
Hamiltonian parameters were fixed and we set H, =
—400 Oe and ¢ = 7°. The results of the fitting are shown
by the solid curves in Fig. 2(a). The -calculated
rates reproduce the data quite well. The fit yields ¢, =
1122 m/sand «® = 1.21. These parameters set the overall
scale of the rate and the general slope of the rate versus Hy,
respectively. They do not influence the positions of the
steps, which are determined by Hamiltonian parameters C
and C'. The fit yields C = 55 wK and C' = —0.81 uK,
in good agreement with the values determined spectroscopi-
cally [27]. Using the same parameters, we can also calculate
I" for the n = 1 resonance, shown in Fig. 4(b). Again, the
calculations accurately reproduce the structure of the mea-
sured relaxation rates. [Because of the large background for
the sample B data (Figs. 3 and 4), fits of that data do not
produce physically meaningful values of ¢, and k?]

Our calculations allow us to precisely determine which
pairs of levels dominate the tunneling process as a function
of Hr. The inset of Fig. 2(b) shows an example of the
probability “currents” (dashed arrows) [37] between some
of the relevant states at Hy = 4.8 kOe. The state labels
indicate the values of (S_). Diagonal arrows correspond
to tunneling transitions in the energy eigenbasis—such
transitions would be forbidden in the absence of tunneling.
For this example, m = =3 are clearly the dominant tun-
neling levels. These calculations confirm the interpretation
of the steps in the relaxation rate given above, e.g., for
n=0 at Hy ~4.2kOe the dominant tunneling pair
switches from m = =2 to m = *£3.

In conclusion, our measurements provide the first evi-
dence for a geometric-phase interference effect in a truly
fourfold symmetric SMM. The results also demonstrate this
effect in the thermally assisted tunneling regime, allowing
identification of which levels dominate the tunneling pro-
cess. It may be possible to observe similar effects in this
system in ground-state tunneling. Such experiments would
require lower temperatures and higher magnetic fields.
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