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Outline

Grobner
Bases Tutorial

NN The original plan was to cover five topics:

e Graph Theory

e Geometric Theorem Discovery

e The Generic Grobner Walk

e Alternatives to the Buchberger Algorithm < Too hard
e Moduli of Quiver Representations « Too complicated

The new plan is to cover four topics:

e Graph Theory

e Geometric Theorem Discovery
e The Generic Grobner Walk

e (New) Phylogenetic Invariants



Graph Colorings

Grobner Let G = (V,E) be a graph with vertices V = {1, ceey n}.

Bases Tutorial

David A. Cox Definition

UL A k-coloring of G is a function from V to a set of k colors
such that adjacent vertices have distinct colors.

vertices = 81 squares 35
edges = links between: 1] |2 9
e squares in same column 7| |6 2

e squares in same row 6 5 3

e squares in same 3 x 3 2 - 4 - g

Colors ={1,2,...,9} 3 A1 |8
4 6 I

Goal: Extend the partial
coloring to a full coloring. 3




Graph Ideal

Grobner
Bl The k-coloring ideal of G is the ideal Ig, € C[x; | i € V]
Ml generated by:

forallieV: x<—1
k-2

forallij € E: x4 2 4+ xix 24 x¢ L

Yy
Lemma

V(lgx) € C" consists of all k-colorings of G for the set of
colors consisting of the k™ roots of unity

Hn = {17 Zka Zkza See ZIE_:L}? Zk :eZTIi/k.

(X —1)— (Xjk —1) _ k1

Xj —Xj !

k—2

Proof. +X X4 O




The Existence of Colorings

Grobner .
Bases Tutorial Two Observations
David A Cox @ G has a k-coloring <= V(Igx) # 0.

Graph Theory @ Hence the Consistency Theorem gives a Grobner basis
criterion for the existence of a k-coloring.

3-Colorings

For 3-colorings, the ideal I 3 Is generated by

foralliecV: x>—1
forallij € E: X7+ XiX +X°.

These equations can be hard to solve!

3-colorability is NP-complete.
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Graph Theory

This example of a graph 1

with a 3-coloring is due
to Chao and Chen (1993).

Hillar and Windfeldt (2006)
compute the reduced Grobner
basis of the graph ideal I 3
for lex with X > --- > Xq5.

The reduced Grobner basis is: 4

(X% — 1, X7 —X12, X4 —X12, X3—X12,
X121+X11X12+X122, X9 —X11, X6 —X11, X2 — X11,
X10 T X11 T X12, Xg +X11 +X12, X5+ X11 + X12,
X1 +X11 +X12}.

Note Xg — X109, X5 —X10, X1 — X190 € lg 3-




Uniquely k-Colorable Graphs

Grobner

ZEEN  The Chao/Chen graph has essentially only one 3-coloring.

David A. Cox

Definition

Graph Theor
p 8 A graph G is uniquely k-colorable if it has a unigue

k-coloring up the permutation of the colors.

Hillar and Windfeldt show that unique k-colorability is easy
to detect using Grobner bases.

We start with a k-coloring of G that uses all k colors.
Assume the k colors occur among the last k vertices. Then:

@ Use variables Xq,...,Xq—k, Y1,-..,Yk With lex order
X1 > >Xn_k >VY1> > Yk

@ Use these variables to label the vertices of G.



Some Interesting Polynomials

Grobner

SRIEN  Consider the following polynomials:
David A. Cox

Kk
Graph Theory yk B 1

Xi —Yj, color(xj) = color(y;), j > 2
Xj +Y2+---+Yk, color(x;)=color(yy).

In this notation, the Grobner basis given earlier is:

{ys -1,

N2(Y2,Y3) = VY3 +Y2Y3 +Y5, hi(y1.Y2.¥s) =Y1+Y2+Ya,
X7 —Y3, X4 —Y3, X3—Y3, Xg—Y2, Xg—Y2, X2 —Y2,

Xg +Y2 +Y3, X5+Y2+Y3, X1 +Y2+Y3}.



A Theorem

Siciiy  Summary:
David A. Cox @ G has vertices X1,....Xn—k» Y1,---,Yk-

@ G has a k-coloring where y;,...,yx get all the colors.

@ C[x,y] haslexwith Xy >--- > Xn_k > Y1 > -+ > Yk.
Using this data, we create:

@ The coloring ideal I x € C[X,Y].

@ The n polynomials g4,...,9, given by

y =1, hi(yi,--,Yk), Xi—VYj, Xi+Y2+-+VYk

The following are equivalent:
@ G is uniquely k-colorable.

@ g1,...,0n € lgk-
@ {01,...,0n} is the reduced Grobner basis for Ig y.

Graph Theory




Remarks

Grobner
Bases Tutorial

sowe®  When G is uniquely k-colorable, the theorem implies

Graph Theory <|—T(IG,k)> — <Y|i<<, yli(__]:!-a SO y227 Y1, Xn—ky -+ 5 X1>’

Since
@ dimCIx,y]/lg k = #monomials not in (LT(Ig x)), and
@ Ig  Is radical,

a uniquely k-colorable graph has

#k-colorings = dimC[x,y|/lgx =k -(k —1)---2-1 =Kkl

Hillar and Windfeldt have a version of this result that doesn’t
assume we know a k-coloring in advance.
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Graph Theory

Final Comment

Other aspects of graphs can be coded algebraically. Here is
an example from de Loera, Lee, Margulies, and Onn (2007).

Let G = (V,E)withV ={1,...,n}. Consider variables
X1,...,Xn @andys,...,yn and fix a positive integer L.

G has a cycle of length L < the following equations have

a solution:
Y1+ +yn=L

yi(yi—1)=0, 1<i<n
MNe_:(Xi—s)=0, 1<i<n
Vi [106 =yxi+y)(xi —yxi —yj(L=1))=0, 1<i<n




A Final Amusement

Grobner .
Bases Tutorial To solve this sudoku, use:

David A. Cox ] o 3 5
e 81 variables x;;, 1 <1,] <9.

e Relabel the 9 variables for
red squares as yi,...,VYo.

e The graph ideal Ig o.

e The 9 polynomials yq° —1,
hg(Ys,Ye),h7(y7,Ys,Y9),
he(Ye,Y7,Ys:Ya);- -,
hi(yi,...,Ye) =Yy1+-++VYo. 371

e The 16 polynomials x3; — Y7,

X33 — Y6,X37 — Y2, ..
Assuming a unigue solution, the Grébner basis of the ideal

generated by these polynomials will contain x;; —v;, etc.
This will tell us how to fill in the blank squares!

Graph Theory
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Geometric Theorem Discovery

Grobner
Bases Tutorial

David A. Cox

N Our next topic involves an application of comprehensive
eometric . . .

Theorem Grobner systems to the problem of discovering the correct
Dseore hypotheses that give an interesting theorem in geometry.

Our discussion was inspired by a preprint of Montes and
Recio (2007).

We begin with an example of Sato and Suzuki (2006) that
llustrates specialization of Grébner bases.



Example 1

Grébner
Al Theideal | := ((u—1)x+y?,uy +u) Ck[x,y,u]. Alex
David A, Cox Grobner basisforx >y > u s
Geometric {UX—X—I—yZ,Uy—|—U,Xy +X_y3_y2}

Theorem
Discovery

We think of u as a parameter.

SetV :=V(I) C A3. Let's apply our theorems:

@ Elimination Theorem = 1, = {0}.

@ Closure Theorem = the projection of V onto the last
coordinate has Zariski dense image in A?.

A more careful analysis reveals that (V) = A\ {1}.

This raises two questions.



First Question

S Does G = {ux —x +Yy?, uy +u, xy +x —y° —y*} remain a

Bases Tutorial

el Grobner basis (for lex with x > y) when the parameter u is
given a specific numerical value b?

Geometric Two observations:

Theorem S

Discovery @ Settingu =1 gives G; ={y?, y +1, xy +x —y® —y*},
which generates (1) = k[x,y]. Since 1 ¢ (y2,y,xy), G is
not a Grobner basis.

@ Write G as
{(U—l)-X—I—yZ, U'y—l—u, l'Xy_l_X_yB_yz}‘

Ifu=Db 0,1, the Special Case considered in the proof
of the Closure Theorem implies that G, is a Grobner

basis.

General Question: How do Grobner bases specialize?



Second Question

Grobner
Bases Tutorial

SIS Since (V) = A\ {1}, the equations

2 __ _
Geometric (U o 1)X _|_y = uy +U = 0]
Theorem

Di .
S have a solution whenu =b # 1.

How many solutions?
@u=b+#0,1=(b—1)x+y?=y+1=0 has aunique
solution.
@ u=0= —x+Yy2 =0 has infinitely many solutions.

General Question: How do we describe the number of
solutions?



Answers for the Example

Grobner
Bases Tutorial

Consider the following pairs:

(S1,G1) := (A\{0,1},{(u—1)x +y?,uy +u})
Ei%f%c (S2,G2) == ({0}, {x —y?})
y (S3,G3) := ({1},{1}).
Note that:

@ S; is constructible, S;US, US3 = Al is a partition.

@ Forb € S, Gj, Is areduced Grobner basis (almost).
@ Forb eS;, (LT(G;p,)) is independent of b.

@ (LT(G1p)) = (X,¥), (T(G2p)) = (X), (LT(Gsp)) = (1) gives
the number of solutions.

This is a minimal canonical comprehensive Grobner system.



Bases Tutorial

David A. Cox

Geometric
Theorem
Discovery

Let | C k[x,u] be an ideal with variables x = (x4,...,Xn) and
parameters u = (Uyg,...,Uny). Fix an order > on k|[x].

A minimal canonical comprehensive Grobner system for |
and > consists of pairs (S;, G;) satisfying:

@ The S; give a constructible partition of A™.

@ For b € §j, setting u = b gives a reduced Grobner basis
Gijp (up to constants).

@ Forb €S;, (1(Gjp)) is independent of b.
@ No smaller partition exists with these properties.

This definition is due to Manubens and Montes (2006).



A False Theorem

Grobner
Bases Tutorial

David A. Cox

Let CD be the diameter of a
circle of radius 1. Fix A. Then:

Geometric
Theorem

<—
Discovery e The line AE Is tangent to the
circle at E.

] — ——>
e The lines AC and ED meet at F.

C
False Theorem
AE = AF.
Challenge: Discover reasonable

hypotheses on A to make the
theorem true.




Hypotheses

Grobner

Bases Tutorial S L
et A= (uq,u
David A. Cox ( o 2)

E = (X17X2)
F = (X3,Xa).
Geometric
Theorem Then:
Discovery

e AE | OF gives

hy:= (X1 —Ug)(Xy — 1) + (X2 — Uz)X>.

e OE =1 gives C

— —
e =AC N ED gives

N3 := U1 X4 — UsX3.

hg :=X4(X1 —2) — Xa2(X3 — 2).



Grobner
Bases Tutorial

David A. Cox

Geometric
Theorem
Discovery

More Hypotheses

We also need to assume:
e A#C, so

u; %0 oru, #0.
e E #£D,so

X27£2.

Conclusion: The ideal that
describes this problem is
the saturation

| .= <h1,h2,h3,h4> : <(X2 — 2)U1,(X2 T 2)u2>oo

In the ring k[Xl,Xz,Xg,X4,U1,U2].




Strategy

Grobner

B Tutorial . .
B Our false theorem asserts AE = AF. This gives
VI . X

g:= (Ul — X1)2 + (U2 — X2)2 — (Ul — X3)2 — (U2 — X4)2.

Geometric

Theorem
Discovery
Strategy

Compute a MCCGS for the ideal

|+ <g> C k[X17X27X37X47u17 u2]7 Uy, Uy parameters.

The false theorem is true for those u = b € A2 for which

0#V(lp+ (@) C A*. )




The MCCGS

Grobner The MCCGS for | + (g) C k[X1,X5,X3,X4,U71,Us] under lex

Bases Tutorial

David A. Cox order with X1 > X2 > X3 >Xg 1S
(S1,G1)U---U(Se,Ge)

Geometric
Theorem

Discovery The S; and Leading Terms

i Si LT(Gib)

1| A%\ (V(uf4u5—2u;)UV(up)) 1

2 | V(u2+us—2u;)\ {(0,0),(2,0)} | X1,X2,X3,X2
3 V(u1)\{(0,0),(0, i)} X1,X2,X3, X5
4 {(0,xi0)} X1,X2,X3,X4
5 {(2,0)} X1,X5,X3,X2
6

{(0,0)} X1,X2,X2, X2




Consequences of the MCCGS

Grobner
Bases Tutorial

@ We can ighore

S4=1(0,£1)}, Ss=1(2,0)}, Se¢=1(0,0)}.

David A. Cox

Geometric
Theorem

Discovery The first is not real, and the second and third are
Impossible since E #D and A # C.
@ Gy ={1}onS; =A%\ (V(uZ+us—2u;)UV(up)) =

V(II+(g)) =0 if u=b ¢ V(uf+us5—2u;)UV(uy).

@ Hence the “false theorem” AE = AF (i.e., g = 0) cannot
follow from our hypotheses (i.e., the ideal I) unless the
point A comes from V(uf + us — 2u; ) UV(uy).

@ This holds < A is on the circle or the tangent at C.



Consequences and Expectations

Grobner

Bases Tutorial il Consequence

B “A is on the circle or the tangent at C” is a necessary
condition for AE = AF.
Geometric

ISTE Before we investigate sufficiency, note that when a solution
IScovery . . .
exists, we expect two solutions: Given A, there are two

choices for E:




Grobner To study whether the condition:

Bases Tutorial

David A. Cox " . . ”
A 1s on the circle or the tangent at C

Geometric IS sufficient, we use:

Theorem

Discovery

S = V(uf +u3 —2u1)\ {(0,0),(2,0)}
Sz = V(ul) \ {(070)7 (Ov:l:i)}'

Both have L7(Gjp,) = (X1,X2,X3,X2), S0 there are two
solutions (counting multiplicity).

Notice that:
@ S, corresponds to “A is on the circle”.

@ Sj3 corresponds to “A is on the tangent at C”.
We study each case separately.



On the Circle

Grobner

@l \When A is on the circle, we get:

David A. Cox

Geometric

Theorem — —
Discovery _ E=F

Here, AE = AF Is true — both sides are zero! The unique
solution has multiplicity two (the tangents from A coincide).

Hence the “false theorem” is true but not interesting.



On the Tangent

Grobner

el When A Is on the tangent,
RVCPNESl e get the picture to the right. F

There are two choices for E:

Geometric
Theorem
Discovery

e For £, we get
F1 =E1, so AE = AF

. . . A
IS true but uninteresting.
e For E,, we get an
Interesting theorem!
Fl — El — C D

This Is automatic theorem
discovery using MCCGS.
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Changing Grobner Bases
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@ Sometimes one Grdbner basis (say grevlex) is easy to
find while another Grobner basis (say lex) is harder.

@ In the O-dimensional case, one can use the FGLM
The Generic algorithm of Faugere, Gianni, Lazard and Mora (1993).

Grobner Walk
@ For arbitrary ideals, one can use the Grobner walk of
Collart, Kalkbrener and Mall (1997).

@ Avoiding “bad walks” sometimes requires perturbations
and large integer arithmetic.

@ The generic Grobner walk of Fukada, Jensen,
Lauritzen and Thomas (2007) avoids this problem.



The Grobner Cone

Grobner
Bases Tutorial

| Definition
David A. Cox

Let (G, >) be the reduced Grébner basis of | C k[x]. The
Grobner cone C. (1) C R consists of all w € RT} such that

w-u>w-v ie., w-(u—v)>0,
The Generic
Grobner Walk

where x" =wm(g), g € G, and x¥ # x" appears in g.

{y3 x 2 x3—y?+x}is areduced Grobner basis for

| = (x2—y ,x3 y? 4+ x) using grlex with x >y. Then
C.(I) CR? is defined by

w-(—-2,3)>0, w+(3,-2)>0, w-(2,0)>0.




The Grobner Fan

Grobner
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David A. C
Y M Theorem

Fix an ideal | C k[x].
© As we vary over all monomial orders on k[x], | has only
e Generic finitely many distinct reduced Grobner bases.
el @ Two distinct Grobner cones of | intersect in a common
face of each.

v
Corollary

The finitely many distinct Grébner cones form a fan, called
the (restricted) Grobner fan, whose support is the first
orthant R". of R".
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The Generic
Grobner Walk

The Grobner fan of (x? — yj,x3 —y? +x) has seven cones:

1/4
1/7

1: lex withy > X
{x8 —3x5%4+3x*—x3—x%,xy —x"+2x> —x3+x2,y? —x3—x}

4. grlex or grevlex withy >x orx >y
{y® —x2,x% —y? +x}

7 lexwith x >y
{y?=2y® —y*+ydx -y +y*—y?}



The Grobner Walk

Sy Let (G, >) be a reduced Grbébner basis of I.

Bases Tutorial

David A. C . ..
HES M Definition

Ifg=3S,ayx¥ € Gandw € R}, then

nw(g):= > ay x".

The Generic WV =max
Grobner Walk y

w is in the interior of C. () <= inw(9) =LT(9) Vg € G.

Intuition for the Grobner Walk

If w lies on the boundary of C. (1), then:
@ (iny(G)) is “close” to a monomial ideal.
@ Finding the Grobner basis on the other side is “easy”.

v




Grob (w2 _y3 3 _\y2 .. :
Bases Tutorial | = (x<—y~°,x°—y“+Xx) has reduced Grébner basis

BN G = {y3 —x?%,x3 —y2+x]} for grevlex with x >y. We will
“walk” to the reduced Grdbner basis for lex with x > y. Note:

@ (1,1) is in the interior of the initial Grobner cone.
@ (1,0) is in the target Grobner cone.

The Generic
Grobner Walk

3/2

2/3




Grobner e Compute that we leave the initial cone at w = (1,2/3).

Bases Tutorial

David A. Cox
3/2

2/3

The Generic
Grobner Walk

e Compute iny (G) = {y3 —x?,x3} and compute a lex
Grobner basis H = {x? —y3.xy3,y%} of (in,, (G)).

Lifting Lemma

A Grobner basis (possibly non-reduced) for > jex IS

{h—h®|heH]}.




Grobner

el e The lemma gives the Grobner basis:

David A. Cox
2 3 w3 2 6 2 2
{X°—y7xy° =y =X, y° —xy~ —x“}.
Reducing gives the new reduced Grobner basis:
The Generi 2 3 3 2 6 2 3
Grobner Walk {X“—=y  xy® —y =X, y° —xy“ -y}

and new Grobner cone:

3/2

new
“ cone

1/4

i ~ walk
(1,0)

e Repeat, starting with the new cone!



Problems

Grobner

Bases Tutorial A Wa.lk can be:
DavIA A, Cox @ good when it crosses only walls.
@ bad when it meets an intersection of walls.

z

The Generic
Grobner Walk y

bad <
good

X y

(This is a 2-dimensional slice of a Grobner fan in IR{E’;.)

Perturbations are used to ensure that the walk is good, but
this causes problems with w (large integers).



The Generic Grobner Walk

Grobner
Bases Tutorial

e Convert a reduced Grobner basis (Gy,>1) to (G2, >»).

The generic Grobner walk picks w; € C, (1) that are
sufficiently generic and computes consequences of w;

without knowing w; explicitly.

The Generic
Grobner Walk

Key Question
When does w = (1 —t)w; +tw, leave C. (1)?

C.,(I) consists of those w € R"} satisfying
W-u>w-v, g=ayX"'+---Fax' +--- €G;
Set A(G1) ={u—v as above}, sothat C. (l)is
w-y>0 Vye A(G;), weRl.

Elements of A(G,) are called facet normals.



Normals Instead of Weights

Grobner
Bases Tutorial

The generic Grobner walk replaces weight vectors with

David A. Cox
facet normals to keep track of the walk.
Classic Generic
The Generic 3/2 3/2
Grobner Walk
213 2/3
PV
Y
— W 1/4 <Y 1/4
W 1/7 1/7
~ W

use weight vectors

use facet normals



Facet Normals Tell Us Everything

Grobner

SRRl Suppose the classic Grobner walk crosses cones at a
BRI AT (E7S generic point w of the facet defined by .

Ifg=ayx"+---+ayx’+--- € G, then:
@ iny(g) equals ayx" plus those terms ayx" with
w-u=w-,ie.,w:(u—v)=0.
@ By genericity, this happens < u —v is parallel to v.
@ Thus, writing in,(g) instead of iny, (g), we have

The Generic
Grobner Walk

iny(g) = aux" + 3 y_y|yavXx’.

Furthermore:
@ H is the Grobner basis of (iny(G)) for >».

@ The new Grobner basis is {f —f¢ |f € H}, where f® is
the remainder of f on division by G under >;.



Grobner
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The Generic
Grobner Walk

Find the Facet Normal

Lemma

w = (1 —t)w, +tw, leaves the Grobner cone of G when

t =min{t, | y€ A(G), wy-y >0, wy-y <0},

W1,W> 0N opposite sides

1
— -
1. V2'y
Wyp-y

where

ty:

Any y with minimal t, is the desired facet normal!

Let's compare t, and t5. Since w; Is generic for >,
ty <ts < Wz (W1-0)y <wWp-(W1-Y)0 < (W1-0)y <z (W1-Y)O.

This removes w», from the picture.



Find the Facet Normal

Grobner

et To remove wq, represent >, using 74,...,Tp. This means
David A. Cox
U<,V&ST:U<TV,0r7-u=r1y-vand ,-u <T1,V, Or ...

Then testing (wy:0)y <, (wy-y)0 requires checking
Crobner Walk Ti-(wi-3)y) < 1i-((wy1-)d).
Rewrite this as
w1 ((Ti-y)0) < wy-((1i-0)y).
Since w; Is generic for >4, this Is equivalent to
(Ti-¥)0 <1 (7i-9)Y.

This removes w; from the picture.



Grobner
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The Generic
Grobner Walk

As before, we convert a reduced grevlex Grébner basis with
X >y forl = (x? —y3,x3—y2+x)tolex with x >vy.

We assume we have done one step to obtain the first facet
normal y = (—2,3) and the reduced Grbébner basis

G={x*—y3xy®—y?—x,y° —xy? —y?}
This gives A(G) = {(2,-3),(1,1),(0,3),(~1,4)}.
The second facet normal lies In

(Ye AG)[y>10. y<2 0} = {(-1,4).(0.3)

y separates >1,>» Yy o)

Which do we use: yor 07



Grobner
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The Generic
Grobner Walk

Here is the picture:

Then:

e >, IS grevlex with x >y and >, Is lex with x > .
e Represent >, using:

11 =(1,0), 172 =(0,1).

e Our previous analysis gives:

t, <ts < (11-Y)d <1 (11-0)y, or (11-y)0 = (11-0)y and ...

& (0,—-3) <1 (0,0).

Conclusion: The second yis (—1,4).



Summary
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B The Generic Grobner Walk

Input: A reduced Grobner basis (G1,>1) of I.

Output: A reduced Grobner basis (G,,>») of I.

. Use G; to find the first y using (1;-y)d <1 (7;-0)Y.

: Use yto find in,(Gy).

. Find a reduced Grobner basis (H,>2) of (in,(Gy)).
 Liftto H' = {f —f¢ |f c H}.

. Autoreduce to get the next reduced Grobner basis.
. Iterate!

The Generic
Grobner Walk

o 01 A W DN BB



Final Comments
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S, G Another interesting variation on the Grobner walk has been
proposed by Tran (2007). It uses the following definition.

Given | C k[x,y]|, @ monomial order > is ideal-specific for |
The Generic

el for eliminating x if the reduced Grébner basis (G, >)
has the property that for any g € G,

LT(g) € kly] = g e k]y].

Given | C k[x,y] and (G, >) as in the definition, G Nk[y] is a
Grobner basis for the elimination ideal I NKk]y].




Final Comments

Grobner
Bases Tutorial Lemma
sl Suppose a Grobner cone C. (1) contains a weight vector

W:(\B].??ﬁS/? 9,79)

~~

TV \
X variables y variables

The Generic
Grobner Walk

Then > is ideal-specific for | for eliminating x.

Tran has applied this to elimination theory via the classic
Grobner walk (with perturbations introduced in 2000).
@ The target is an elimination order >,, but the walk stops
as soon as If finds an ideal-specific elimination order.
@ In examples, the Grobner walk traverses 92 cones, but
finds an ideal-specific elimination order after 86.
@ Since the later cones can require the most
computation, this can cut the running time in half.
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Phylogenetic Trees

Grobner

SRIEN  Consider a rooted tree with a probability distribution at the
LR root, a binary random variable at each leaf, and a transition
matrix along each edge.

Phylogenetic
Invariants

X1 X2 X3

This is the Cantor-Jukes binary model for Ky 3.



The Probability Distribution

LY The matrices AT = (g2 a2) A% = (g @), A= (18 ) give

P(X;=]) = mAg + ThA;.

David A. Cox

Experimentally, we can measure the probabilities
Pik := P (X1 =1,Xy =], X3 =K).
The goal is to determine 73, a;, 5, ;. Note that

Phylogenetic
Invariants Pooo = ThAp ﬁo Yo +Thdq Bl i

Poo1 = To0oPo Vs + 0151 Yo,

and so on.




Phylogenetic Invariants

Grob S HT B .
maoner The probabllities pjx are not independent. For example,

sl regardless of how we assign 73, a;, 3, ¥, the pjx always
satisfy the relation

Poo1Po10 +~ Poo1P100 — PoooPo11 — PoooP101
+ P10oP111 — P101P110 + Po10oP111 — Po11P110 = O.

Phylogenetic This is an example of a binary phylogenetic invariant.

Invariants

Binary phylogenetic invariants form an ideal in k[pjj]. Note:

@ We can compute this ideal by eliminating 75, q;, G,
from the equations defining the pjy.

@ Knowing the phylogenetic invariants is useful since they
mean we don’t have to find all p;x—we can find some
and solve the above equations for the rest.

@ Once we have the pj, we can solve for 7z, a;, 3, .



Change Coordinates

Grobner A Fourier transform gives a linear change of coordinates

Bases Tutorial

swwesl  that transforms both p; and the parameters 73, a;, 5, ¥ into
new variables q;x and new parameters r;,a;, bj, ¢; such that

QJooo = rOaObOCO, Joo1 = r]_aoboCl, .

Eliminating the parameters gives the phylogenetic ideal

Phylogenetic (00019110 — 900091115 901091201 — 90009111, d1000011 — Jo00d111) -

Invariants

This is a example of a toric ideal (a prime ideal generated
by differences of monomials). Ordering the variables

Jooo > Joo1 > o100 = Jo11 = Y100 =~ 9101 > U110 > 111,

(the reverse of their binary values), a lex Grobner basis is

{d0009111 — 00119100, 90019110 — Y01191005 90109101 — 0110100 } -



Some Results

Grobner
Bases Tutorial

ravida cox [ Theorem (Sturmfels and Sullivant (2005))

The computation of the binary phylogenetic ideal can be
reduced to the case of Ky .

For Ky n, we have:
n I . . .. —_
Phylogenetic @ 2" variables qll...|n1 |J —O,l
Invariants (* ) 2(n + 1) parameters a(J)’ | = O, 1’ J _ 07 17 L n.
@ 2" equations g, = ai(10‘|)""-|—inai(11) .. a™M

In °

Theorem (Sturmfels and Sullivant (2005))

The binary phylogenetic ideal I, C k[q;, ;] obtained by
eliminating parameters is generated by degree 2 binomials.




A Grobner basis?

Grobner
Bases Tutorial

LUPNER®  The number of degree 2 generators of |, increases with n:

n 3| 4 5 6
#mingens | 3 | 30 | 195 | 1050

For n = 3, the degree 2 generators form a Grobner basis.

Phylogenetic
Invariants

Is this true in general? In other words, does |, always have
a degree 2 Grobner basis?

Recent work of Chifman and Petrovi¢ (2007) says that the
answer is yes.



Set-up for the Grobner Basis

Grobner The degree 2 Grobner basis G, of |, Is described

Bases Tutorial

Savid A Cox recursively.
@ Ry :=k]qi, i ] has lex order with

Jo..00 > Jo..01 > Jo..10 > Yo..112 > - > (U1..10 > (1...11-

@ For1l <) <n,define it :R,— Rp_1 by

Phylogenetic

Invariants TE(CIil...in) :qi oL,

1...'] ...In

@ For A\B,C,D € {0,1}" with ga > Qgg,da > Jc > Op, Set

g = Jdade —dcdp.

Given G,,_1, describe which g’s lie in G,,. l




Describe the Grobner Basis

Grobner Recall that G5 is

Bases Tutorial

David A. Cox
{40000111 — 901191005 90019110 — 0119100, Jo109201 — 0110100 }-

Assume G,_1 has been defined for some n > 4. Then G,
consists of the following two types of g = qadg — qcdp:

@ Type 1. For some ], we have A; = B; = C; = D; and
15(9) € Gn-1.

@ Type 2: For all |, we have A; +B; = C; +D; =1 and
15(9) € Gp_1.

Phylogenetic
Invariants

Theorem (Chifman and Petrovic (2007))

Gp Is a lex Grobner basis of |,.




Consequences

Grobner
Bases Tutorial

David A. Cox

For any tree, the binary phylogenetic ideal has a Grébner
basis consisting of degree 2 binomials.

Corollary

" | When we regard the field k as graded module over the
ogenetic ) . i ) .
variants quotient ring Ry /Iy, its free resolution is

oo = (Rn/In)P2(=2) = (Rn/1n)Pr(=1) = Rp/In — k — 0.

It follows that R, /I, is a Koszul algebra.

y

This corollary is a good example of how Grobner bases can
be used to prove theoretical results in commutative algebra
and algebraic geometry.



A Final Question

Grobner
Bases Tutorial

David A. Cox

Sequence A032263 from Sloane’s On-Line Encyclopedia of
Integer Sequences begins

0, 0, 0, 3, 30, 195, 1050, 5103, 23310, ...

Phylogenetic
Invariants

This gives the number of 2-element proper antichains in an
n-element set. The formula for the nth term is

N[

(4" —3.3"4+3.2n—1).

Is this |Gn|?
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