LECTURES ON TORIC VARIETIES

DAVID A. COX

INTRODUCTION

Toric varieties are geometric objects defined by combinatorial information. They provide a
wonderful introduction to algebraic geometry and commutative algebra. In these lectures, we will
explore various aspects of this rich subject. Here is a brief synopsis of the lectures:

LECTURE 1: Toric Varieties, Lattices, and Cones

The first lecture will define toric varieties and give some examples. I will introduce two lattices
that play an important role, the lattice of characters and the lattice of one-parameter subgroups.
Examples will be given to show how these lattices arise naturally when considering toric varieties.
We will also describe affine toric varieties in terms of cones and their duals.

LECTURE 2: The Toric Variety of a Fan

The second lecture will discuss certain collections of cones called fans and give the classic con-
struction of the toric variety of a fan. The basic idea is that the combinatorial data of the fan
tells us how to glue together the affine toric varieties coming from the cones of the fan. We will
then consider standard properties of toric varieties, including smoothness and completeness. We
will also discuss normality and Cohen-Macaulayness and say a few words about simplicial fans and
finite quotient singularities.

LECTURE 3: Homogeneous Coordinates and Toric Ideals

The construction of a toric variety from a fan goes back to the introduction of toric varieties in the
1970s. More recently, two new constructions of toric varieties have been given. The first generalizes
the construction of projective space as the quotient of affine space minus the origin. We will see how
this gives explicit pictures of some toric varieties. The second construction uses monomial maps
and generalizes the idea of a monomial curve, such as the twisted cubic given by ¢ — (¢,2,13).
This will lead to the notions of toric ideals and non-normal toric varieties.

LECTURE 4: Polytopes and Toric Varieties

In this lecture, we will see that every lattice polytope gives a projective toric variety. We will
explain this from several points of view, including normal fans, monomial maps, and homogeneous
coordinates. We will also briefly discuss the Dehn-Sommerville equations and Ehrhart polynomials.

LECTURE 5: Toric Regularity

In the final lecture, we will define regularity in the toric context and work out its explicit meaning
for P! x P! and P(qo,...,qn). We will see that multi-graded commutative algebra has some subtle
features.

We also include a brief summary of the background material on affine and projective varieties
required for the lectures.
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0. BACKGROUND

Our review of affine and projective varieties assumes familiarity with Chapter I of Hartshorne’s
Algebraic Geometry [21], though we will use slightly different terminology and notation. Other
introductions to algebraic geometry include [9, 20, 29].

For simplicity, we will work over the field of complex numbers C.

0.1. Affine Varieties. Given polynomials fi,..., fs € Clz1,...,zn], we get the affine variety
V(fir-orfo) ={a €C" | fi(a) = - = fo(a) = O}.
More generally, if I C Clz1,...,z,] is an ideal, then we define
V(I)={a€eC"| f(a)=0forall f €I}

If I =(f1,...,fs) is the ideal generated by fi,..., fs, then V(I) = V(f1,..., fs). All ideals in
Clz1,...,zy] are of this form by the Hilbert Basis Theorem.
Given an affine variety V C C", we get the ideal

I(V)={f eClz1,...,z,] | f(a)=0for alla € V}.

If V. C C" is an affine variety, then we always have V' = V(I(V)). On the other hand, if I C
Clz1,...,2y,] is an ideal, then the Hilbert Nullstellensatz tells us that v/T = I(V(I)), where

VI={f €Cxi,...,z,] | f™ € I for some m > 1}

is the radical of I. The same result holds over any algebraically closed field.

Using the Nullstellensatz, one sees that every maximal ideal of Clzy,...,z,] is of the form
(r1—a1,...,Zn—ayn), where a; € C. Thus there is a one-to-one correspondence between points of C”
and maximal ideals of C[z1,...,z,]. This correspondence extends to a one-to-one correspondence

affine varieties of C"* +— radical ideals of C[z1, ..., z,].

Recall that an ideal I is radical if I =+/I.

0.2. Coordinate Rings. Polynomials f,g € Clz1,...,z,] give the same function on an affine
variety V if and only if their difference lies in I(V'). Thus the ring of such functions is isomorphic
to the quotient ring

CIV] = Clax, ..., za] /I(V).

This is the coordinate ring of V. We observe that there is a one-to-one correspondence between
points of V and maximal ideals of C[V].

Affine varieties V7 € C" and Vo € C™ are isomorphic if there are polynomial maps F : C* — C™
and G : C" — C" such that F(V;) = V5, G(V») = Vi, and the compositions F' o G and G o F are
the identity when restricted to V4 and Vj respectively. Two affine varieties are isomorphic if and
only if their coordinate rings are isomorphic C-algebras.

We characterize coordinate rings of affine varieties as follows.

Proposition 0.1. A C-algebra R is isomorphic to the coordinate ring of an affine variety if and
only if R is a finitely generated C-algebra with no nonzero nilpotents, i.e., if f € R satisfies f™ = 0,
then f = 0.
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To emphasize the close relation between V' and C[V], we will sometimes write
V = Spec(C[V])

This can be made canonical by identifying V' with the set of maximal ideals of C[V']. This is part
of a general contruction in algebraic geometry which takes any commutative ring R and defines
the affine scheme Spec(R). The general definition of Spec uses all prime ideals of R and not just
the maximal ideals as we have done. Thus the above should be written V' = Specm(C[V]), the
maximal spectrum of C[V']. Readers wishing to learn more about schemes should consult [15, 21].

Given a C-algebra R as in Proposition 0.1, the affine variety V' = Spec(R) can be constructed as
follows. Since R is a finitely generated C-algebra, we have an isomorphism

R~Clzy,...,zy]/1,
and since R has no nilpotents, the ideal I is radical. Then Spec(R) can be identified with V(I) C C".

0.3. The Zariski Topology. Given an affine variety V' C C", a subset W C V is a subvariety
if W is also an affine variety. An affine variety has two interesting topologies. First, we have the
induced topology from the usual topology on C". This is sometimes called the classical topology.
The other topology is defined as follows. Given a subvariety W C V, the complement V' \ W is
called a Zariski open subset of V. The Zariski open subsets of V' form a topology on V, called the
Zariski topology. Since every subvariety of V' is closed in the classical topology (polynomials are
continuous), it follows that every Zariski open subset is also open in the classical topology.

Given a subset § C V, its closure S in the Zariski topology is the smallest subvariety of V/
containing S. We call S the Zariski closure of S. Note that the Zariski closure of S C C" is
S = V(I(S)). The Zariski closure can be strictly bigger than the closure in the classical topology.

Finally, we remark that some Zariski open subsets of an affine variety V are themselves affine
varieties. Given f € C[V]\ {0}, let Vi ={a € V| f(a) #0} C V.

Lemma 0.2. The Zariski open subset V; C V' has the natural structure of an affine variety.

Proof. Suppose V.C C* and I(V) = (f1,..., fs). Also pick g € C[z1,...,z,] so that f =g+ I(V).
Then Vy =V \V(fi,..., fs,g9). Let W =V (f1,..., fs,1—gy) C C" xC, where y is a new variable.
Then the projection map C* x C — C"* maps W bijectively onto V, so that we can identify V;
with the affine variety W C C* x C. O

0.4. Irreducible Affine Varieties. An affine variety V is irreducible if it cannot be written as
union of subvarieties V =V, UV, where V; # V. Note that V is irreducible & I(V) C Clz1, ..., z,]
is a prime ideal < C[V] is an integral domain. Every affine variety V' can be written as a union

V=Viu---U¥,

where each Vj is irreducible and V; ¢ U#i Vj. We call V1,...,V, the irreducible components of V.
When V is irreducible, the integral domain C[V'] has a field of fractions denoted C(V'). This
is the field of rational functions on V. For example, when V' = C", C[V] is the polynomial ring
Clzy,...,zy] and C(V') is the field of rational functions C(z1, ..., z,). In general, given f/g € C(V'),
the equation g = 0 defines a proper subvariety W C V and f/g : V\ W — C is a well-defined
function. This is written f/g: V --» C and is called a rational function on V.
When V is irreducible and f € C[V] is nonzero, the localization of C[V'] at f is

CVly={g/f" €CV) g € V], n = 0}.

Then Spec(C[V'];) is the affine variety Vy from Lemma 0.2.

In [21], V(I) C C" is denoted Z(I) C A% and called an “algebraic set,” and the term “affine
variety” is used only when V(I) is irreducible. This conflict of terminology won’t cause trouble
since our main objects of interest are toric varieties, which are by definition irreducible.
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0.5. Normal Affine Varieties. Let R be an integral domain with field of fractions K. Then R
is integrally closed if every element of K which is integral over R (meaning that it is a root of a
monic polynomial in R[z]) actually lies in R.

Let V be an irreducible affine variety, so that C[V] is an integral domain. Then V is normal
if C[V'] is integrally closed. For example, C" is normal since its coordinate ring Clz1,...,z,] is a
UFD and hence is integrally closed.

A classic example of a non-normal variety is C = V(z3 — 4?) C C2. This is an irreducible plane
curve with a cusp at the origin, and C[C] = C[z,y]/(z® — y?). However, if X and Y are the cosets
of z and y in C[C] respectively, then Y/X € C(C) \ C[C] satisfies (Y/X)? = X. This implies that
C[C] is not integrally closed. We will see in LECTURE 1 that C is a non-normal toric variety.

Another example is V = V(zy — zw) C C*. It is not obvious, but V is normal. This will follow
from the description

ClV] =~ Clab, cd, ac,bd] C Cla,b,c,d]
to be given in the lectures. The ring Clab, cd, ac, bd] is an example of a semigroup algebra. For this
ring, we will see that normality follows from a property called saturation.

For us, normality is crucial because the nicest toric varieties are normal. We will also discuss
non-normal toric varieties, but the strongest results hold only in the normal case.

Finally, any irreducible affine variety V has a normalization. To define this, first consider

ClV]) = {a € C(V) | « is integral over C[V]}.

We call C[V]' the integral closure of C[V']. It is easy to see that C[V]' is integrally closed. With
more work, one can also show that C[V]' is a finitely generated C-algebra. This gives the normal
affine variety

V' = Spec(C[VY)
which is the normalization of V. Note that the natural inclusion C[V] C C[V]' = C[V'] corresponds
to a map V' — V. This is called the normalization map.

0.6. Projective Space. We define n-dimensional projective space to be the set
P" = (C"\ {0})/~,

where (ag,...,an) ~ (bg,...,by,) <= there is A € C* with (ag,...,an) = A(bg,-..,b,). Here, we
use C* to denote C\ {0}, which is a group under multiplication. As we vary A € C*, the points
A(bg, ..., by) lie on a line through the origin. Thus we get a bijection

P" ~ {lines through the origin in C**1}.

A point p of P" will be written (ag, ..., a,). This is only unique up to multiplication by elements
of C*. We call (ay, .. ., an) homogeneous coordinates of p. This is sometimes written p = [ao, .. ., ap]
orp=(ag:---:ay,). We prefer to write p = (ay,...,a,), where it will be clear from the context

that we are using homogeneous coordinates.

0.7. Homogeneous Ideals and Projective Varieties. A polynomial f € Clzyg,...,z,] is ho-
mogeneous of degree d if every term of f has total degree d. This is equivalent to the identity

fAzo, ..., A\zn) = XNf(zg,...,2,), X€EC.

Any f € Clzg,...,z,] can be written uniquely in the form f =3, f4, where f; is homogeneous
of degree d. We call f; the homogeneous components of f. B

Now let f € Clzg,...,z,] be homogeneous of degree d. Given p € P", we can’t define “f(p)”
since homogeneous coordinates aren’t well-defined. However, the equation f(p) = 0 is well-defined.
Thus, homogeneous polynomials fi,..., fs € Clzg,...,z,] define the projective variety

V(fi,.... fs) ={a €P"| fi(a) =--- = fs(a) =0} C P".
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It is clear what we mean by a subvariety W of a projective variety V' C P". Then V' \ W is Zariski
open subset of V. This gives the Zariski topology on V', and then Zariski closure is defined in the
obvious way. We can also define what it means for a projective variety to be irreducible.

An ideal I C Clzg,...,z,] is homogeneous if it is generated by homogeneous polynomials. Such
an ideal I defines the projective variety

V(I)={a€C"| f(a) =0forall f €I}.
Conversely, given an projective variety V' C C*, we get the homogeneous ideal
I(V)={f € Clzg,...,zn] | f(a) =0 for alla € V'}.

We call (zg,...,z,) C Clzg,...,z,] the irrelevant ideal. 1t is easy to see that V(I) = () when
I contains a power of the irrelevant ideal. This part of the projective version of the Projective
Nullstellensatz, which states that if I C Clzg,...,zy] is a homogeneous ideal, then

V(I)=0 < (zg,...,2,)™ C I for some m >0
and that
V({I) £ 0= L(V(I)) = VI

0.8. Rational Functions. A homogeneous polynomial in C[zy,...,z,] does not give a function
on P". However, the quotient of two such polynomials works, provided they have the same degree.
More precisely, suppose that f,g € Clzg,...,z,] have degree d and that g # 0. Then we get a
well-defined function F

E:P"\V(g)—)@

We write this as f/g : P* ——» C and say that f/g is a rational function on P". The field of all
rational functions on P" is denoted C(P"). Similarly, if V' C P" is irreducible, then we get the field
C(V') of rational functions on V.

0.9. Mappings Between Projective Varieties. Let V C P" is a projective variety. We say that

homogeneous polynomials fy, ..., fim € Clzo,...,z,] of the same degree have no base points on V
ifVNV(fo,...,fm)=0. When this happens, the map
(G’O""aan)H(fo(a()""’a‘n)""’fm(a‘()?""a’n))

induces a well-defined function F' : V. — P™. An important fact is that in this situation, the
image F'(V) C P™ is a projective variety.

In contrast, when V is affine and F': V — C™ is a polynomial map, the image F(V) C C™ need
not be a variety. For example, if V is V(zy — 1) € C? and F is F(z,y) = x, then F(V) is not a
variety. The fact that F/(V) is a variety in the projective case is one reason why projective varieties
are so useful in algebraic geometry.

0.10. Affine Open Subsets. P" contains copies of the affine space C" as follows. For 0 < i < n,
consider the Zariski open set U; = P \ V(z;). It is straightforward to show that U; ~ C" via
(ag,---,an) = (ao/ai,---,a; 1/ai,ai11/0i,--.,a,/a;) and that V(z;) ~ P*! via (ag,...,a,) —
(@g,...,Qi_1,0i41,---,0ay,). Thus we can regard P" as C* together with a copy of P"~! “at infinity”.
Furthermore, P" = Uy U - - - U U,, so that projective space is a union of affine spaces.

More generally, let V =V (f1,..., fs) C P" be a projective variety. Then, under the above map
U; ~C", V NU; corresponds to an affine variety defined by the vanishing of f;, where

fi(@o,. s Tic1, Tig1, -, @) = fj(@o, .., ic1, 1, Tig1, ..., Tp)-
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We call f; the dehomogenization of f; with respect to z;. Then
V=WVnUy)U---u(Vnuy,)

shows that every projective variety can be regarded as a union of affine varieties. This allows us to
define what it means for a projective variety to be normal.

Another way to think about U; ~ C" is to use zo/z;, . . . , Zi—1/%i, Tit1/Zi, - - . , Tn/T; as variables
on C", i.e.,

U; = Spec((C[xo /.’BZ', e ,.’L‘i_l/.’Ei, .TZ'_H/.’EZ', e ,xn/wz]) (0.1)

Then the dehomogenization map is f +— f/z¢, where f € Clxzo, ..., zy] is homogeneous of degree d.

This approach preserves rational functions since f/g — (f/z%)/(g/z¢) induces an isomorphism
C(Pn) =~ C(wo/l‘i, e ,.1‘i_1/£L‘Z',.Z‘Z'_1/:L‘Z', e ,xn/wz)

0.11. Weighted Projective Space. Given positive integers qo,...,q, with gcd(qo,...,q,) = 1,
we get the weighted projective space

P(qo,---+qn) = (C** = {0})/~,
where (ag,...,an) ~ (bo,-..,b,) <= there is A € C* with (ag,...,a,) = (A%bg,...,A"by,).
Obviously P(1,...,1) = P". We call qq,...,q, the weights of the weighted projective space.
In terms of the polynomial ring C[zy, ..., z,], this means that z; has degree g;, and a polynomial
f € Clzo,...,zy,] is weighted homogeneous of (weighted) degree d if

FO®ag,. .. A, = A f (20, ., 0):

These polynomials enable us to define weighted homogeneous ideals I C Clzg,...,zy] and the
corresponding weighted projective varieties V(I) C P(qo, ..., qn)-
In LECTURE 1 we will see that P(qp,...,q,) is a toric variety. Here are two ways to think about

the weighted projective plane P(1,1,2).

Exercise 0.1. Consider P(1,1,2) with variables g, 21,22 of degrees 1, 1,2 respectively.
a. Show that 22, zox1, 2%, 7o are (weighted) homogeneous of degree 2.
b. Show that (ag,a1,a2) — (a3, apa1,a?,as) is a well-defined map F : P(1,1,2) — P3.
¢. Show that the map F' of part b is injective and that its image is the surface defined by the
equation yoys — y? = 0, where 1o, y1, Y2, y3 are the coordinates of P3.

Exercise 0.2. Show that (ag,bo,co) — (ag,bo,c2) gives a well-defined map P? — P(1,1,2). Also
show that this map is surjective and is two-to-one except above (0,0,1) € P(1,1,2).

More generally, one can show that P(qy,...,q,) can always be embedded into projective space.
We can also cover P(qp, ..., q,) by affine open subsets, similar to P". Rather than work this out in
general, we will restrict to the case of P(1,1, 2).

Exercise 0.3. Let U; = {(ag,a1,a2) € P(1,1,2) | a; # 0}. Note that P(1,1,2) = Uy UU; U Us.
a. Show that Uy ~ C? via (a,b,c) — (b/a,c/a?) and U; ~ C? via (a,b,c) — (a/b,c/b?).
b. Let V = V(zz — y?) C C3. Show that Uy ~ V via (a,b,c) — (a?/c,ab/c,b?/c).

0.12. Abstract Varieties. Projective varieties can be expressed as unions of affine varieties, and
the same is true for weighted projective varieties. More generally, one can define abstract varieties
to be unions affine varieties. The full definition requires the study of affine schemes, sheaves, and
ringed spaces—see [15, Section 1.1] and [21, II.1 and II.2] for the details. We will use abstract
varieties in LECTURE 2 when we construct the toric variety of a fan.

Informally, one can define an abstract variety as follows. Suppose that we have a collection

({Va}aa {Va,@}a,ﬂa {ga,B }a,ﬂ)a
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where V,, is an affine variety, V5 C V,, is Zariski open, and the g,g : V5 =~ V3, are isomorphisms
that satisfy the compatibility conditions

® gaa = ly, for every a.

. 9ﬂ~y|vﬁomvﬁ7 © 90y, 5 Vay = gaV‘VagﬂVM for every a, 3, 7.

Then we get the abstract variety

X=JVof ~

where a € V,, is equivalent to b € V3 if a € V.3 and b = g,p(a). We say that X is obtained by
gluing together the V, along the Vg via the g,g.

Example 0.1. Consider the variety X constructed by identifying two copies of C along C*. In the
above notation, this corresponds to Vy = Vi = C, Vp; = Vip = C*, and go1(z) = z. The abstract
variety X lookes like C except that it has two copies of the origin.

On the other hand, if we take Vj, Vi, Vo1, Vip as above and let goi(z) = 7!, then the resulting
abstract variety is P! O

The variety X constructed in this example is not Hausdorff in the classical topology. The alge-
braic name for this condition is separated, to be defined below. With the exception of Example 0.1,
all varieties considered in these lectures will be separated.

0.13. Cartesian Products. Suppose that we have affine varieties V- = V(fy,..., fs) C C"*, with
variables z1,...,%,, and W = V(g1,...,g9;) C C™, with variables y1,...,yn. Then

VxWcCxC" =Cvm

is V(fi,-.-, fs,91,--.,9t), where fi(z1,...,2n),9(y1,---,Ym) € Clz1,...,Zn,Y1,--.,ym|- We call
V x W the Cartesian product of V and W. The coordinate ring of V- x W is C[V'] ®¢ C[W].

More generally, one can define V x W when V and W are projective, weighted projective, or
abstract varieties. We also note that an abstract variety V is separated if and only if the diagonal
map V — V x V has closed image. Complete discussions of Cartesian products and separated
schemes can be found in [15, 21].

0.14. The Local Ring of an Irreducible Divisor. Let X be an irreducible variety with function
field C(X). An irreducible subvariety Y C X is an irreducible divisor if Y has codimension 1 in X.
Let Y C X be an irreducible divisor and set

Ox,y ={f € C(X) | f is defined on a nonempty Zariski open subset of Y'}.

Recall that every f € C(X) is defined on some nonempty Zariski open U C X. Then f € Oxy
when we can find such a U satisfying U N Y # 0. One can show without difficulty that Ox y is a
local ring and that the maximal ideal consists of those f € Ox y which vanish on Y.

Exercise 0.4. Let Y = V() C C? be the y-axis.
a. Prove that

P(z,y)

Q(z,y)

b. Given f € C(z,y), prove that f = 2™g, where m € Z and g € O¢z y is a unit.
c. Prove that every nonzero ideal of O y is of the form (z™) for some m > 0.

O(C2,Y = { ‘ P(l‘,y),Q(.’E,y) € (C[x,y], Q(an) # O}
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Given f € C(z,y), this exercise tells us that f = 2™g for m € Z and g a unit in Oc2 y. We call
m the order of vanishing of f on Y = V(z) C C? and denote it by ordy (f).

The crucial observation is that Exercise 0.4 generalizes to any normal variety. Let R be an
integral domain with field of fractions K, and set K* = K \ {0}. Then R is a discrete valuation
ring if there is a surjective function

ordg : K* = Z

such that every for a,b € K*, we have:

e ordg(ab) = ordg(a) + ordg(d).

e ordg(a + b) > min(ordg(a),ordg(b)) provided a + b # 0.

¢ R={a € K*|ordg(a) >0} U{0}.
We say that ordg is a valuation on K and that R is its valuation ring. One can show that R is
a local ring with m = {a € R | ordg(a) > 0} as maximal ideal. Furthermore, if a € R satisfies
ordr(a) = 1, then m = (a) and every nonzero ideal of R is of the form (a™) for some m > 0. A
discrete valuation ring is an integrally closed 1-dimensional Noetherian local ring.

Here are two classic examples of discrete valuation rings.

Example 0.2. Let p be prime. Then Z,) = {a/b | a,b € Z, ged(p,b) = 1} is a discrete valuation
ring. This gives the p-adic valuation, denoted ord,,.

Example 0.3. The ring C{{z}} of complex power series with positive radius of convergence is a
discrete valuation ring. The valuation gives the order of vanishing of a nonzero element of C{{z}}.

For us, the main result we need is as follows.

Theorem 0.3. Let Y be an irreducible divisor in a normal variety X. Then Oxy is a discrete
valuation ring.

In down-to-earth terms, this means that in a normal variety, one can define the order of vanishing
of a rational function along an irreducible divisor. In LECTURE 3, we will compute the order of
vanishing of a character along a torus-invariant irreducible divisor in a normal toric variety.

0.15. Weil Divisors. A Weil divisor on a normal variety X is a finite formal sum

D = Zs: aiDi
i=1

where the D; are distinct irreducible divisors of X and a; € Z.
Given a nonzero rational function f € C(X)*, we can define ordy (f) for every irreducible divisor
Y C X. This gives a Weil divisor

div(f) = Xyordy(f) Y
since there are at most finitely many divisors Y C X such that ordy (f) # 0.

Two Weil divisors D1, Dy on X are linearly equivalent, written Dy ~ Da, if there is f € C(X)*
such that div(f) = Dy — D,. Furthermore, we say that a Weil divisor D is a principal divisor if
D ~ 0, i.e.,, D = div(f) for some f € C(X)*. Finally, the group of Weil divisors on X modulo
linear equivalence is the Chow group A,_1(X), where n = dim X and the subscript n — 1 tells us
that we are looking at equivalence classes of divisors.

In LECTURE 3, we will see that the torus-invariant Weil divisors on a normal toric variety are
especially easy to describe.

We need one final definition.

Definition 0.4. A Weil divisor D = Y7 , a;D; is effective if a; > 0 for i =1,...,s. This is often
written D > 0.
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0.16. Cartier Divisors. We will give a slightly non-standard treatment of Cartier divisors which
works nicely on normal varieties. Let D = >_7 ; a;D; be a Weil divisor on a normal variety X. If
U C X is a nonempty Zariski open subset, then the restriction of D to U is the is Weil divisor

Dl,= Y aUND;
UND;#£D
We now define a special class of Weil divisors.

Definition 0.5. Let D be a Weil divisor on a normal variety X.
(1) D is locally principal if there is an open cover {U;}ier of X such that D‘Uz is principal

for every i € 1.
(2) D is Cartier if it is locally principal.

A principal divisor is obviously locally principal. Thus div(f) is Cartier for all f € C(X)*. It is
easy to see that a sum of Cartier divisor is Cartier and that any Weil divisor linearly equivalent to
a Cartier divisor is Cartier.

Example 0.4. For an example of a Weil divisor which is not Cartier, consider the affine surface
V = V(zz —y?) C C. The z-axis D = V(y, z) is contained in V, so that D is a Weil divisor on
V. However, one can show that D is not a Cartier divisor (see Example 6.11.3 in [21, I1.6]). Note
that V' appeared earlier in Exercise 0.3. We will eventually see that V is a toric variety.

Finally, the group of Cartier divisors on X modulo linear equivalence is the Picard group Pic(X).
We have a natural inclusion Pic(X) C A,_1(X). One can prove that Weil and Cartier divisors
coincide on smooth varieties, so that Pic(X) = A,_1(X) when X is smooth.

We will see in LECTURE 4 that Cartier divisors arise naturally when considering the toric variety
of a polytope.
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LECTURE 1. TORIC VARIETIES, LATTICES, AND CONES

We define toric varieties, discuss two important lattices, and give some basic examples. We then
explain how cones relate to affine toric varieties.

1.1. A Basic Definition. We begin with the general definition of toric variety.

Definition 1.1. A toric variety is an irreducible variety X such that
(1) (C*)™ is a Zariski open subset of X, and
(2) the action of (C*)™ on itself extends to an action of (C*)™ on X.

Here, a “variety” can be affine, projective, or an abstract variety as defined in the BACKGROUND.
We will see later that the theory of toric varieties works best when the variety is normal.
Here are the most basic examples of toric varieties.

Example 1.1. (C*)"™ and C" are clearly toric varieties. As for P", suppose that xg,...,z, are
homogeneous coordinates on P”. The map

cH” — "
defined by (t1,...,t,) — (1,%1,...,t,) allows us to identify (C*)" with the Zariski open subset
P™\ V(zox1---zp). Then setting
(t1y---stn) - (a0, a1, ... a,) = (ag,t101,...,than)
shows that P™ is a toric variety. O

1.2. Two Lattices. A lattice N is a free Abelian group of finite rank. Picking a Z-basis of N gives
an isomorphism N ~ Z". From N, we get the dual lattice

M = Homgy(N, 7).

The canonical pairing between these lattices is denoted (m,u) for m € M,u € N. Given a Z-basis
of N, the dual basis of M gives an isomorphism M ~ Z" such that (m,u) becomes dot product.
Given a lattice N, an isomorphism N ~ Z" induces an isomorphism

N ®z C* ~ (C)".
We call T(N) = N ®z C* the torus of N. The lattices N and M relate to T(N) as follows:
e First, u € N gives
AY:C" > T(N)
defined by A“(t) = u ® t. This is a 1-parameter subgroup of T(N). If an isomorphism
N ~ Z" takes u to (a1,...,a,), then

AU(t) = (t*,..., %)
under the induced isomorphism 7'(N) ~ (C*)".
e Second, m € M gives
X" :T(N)—->C
defined by X"‘(Zle u; @ t;) = Hle t{mivs) | This is a character of T(N), so that M is its
character group. If M ~ Z" takes m to (b1,...,by,), then

X, ) = 850 thn
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under the isomorphism T'(N) ~ (C*)". We call t2 .-’ a Laurent monomial and often
write #™ instead of x™. The monomials #™ lie in the ring Clt,, 7", ..., t,,t, '] of Laurent
polynomials.
In general, a toric variety consists of T'(N) ~ (C*)™ plus some “extra stuff.” In the case of an
affine toric variety, we will see that the “extra stuff” is determined by which characters x"* extend
to functions on the variety. Here is an example.

Example 1.2. Consider the toric variety C*. Here, N = M = Z", so that we can identify
characters and Laurent monomials. Then one easily sees that the Laurent monomial £ = ¢%* .. . ¢b»
determined by m = (by,...,b,) € Z™" extends to a function C* — C if and only if b; > 0 for all i.
Below we will construct C" using these Laurent monomials. O

1.3. Further Examples. Besides the basic examples given by (C*)™, C* and P", there are many
more toric varieties, including the following.

Example 1.3. If X and Y are toric varieties, then so is X x Y. This shows, for instance, that
P™ x P™ is a toric variety. O

Example 1.4. The cuspidal cubic C = V(y? — z3) ¢ C? from Section 0.5 of the BACKGROUND
contains C* via t — (#2,¢3), and C* acts on C via t - (u,v) = (t?u,t3v). Hence C is toric. O

The previous example is interesting because it is a non-normal toric variety. In dimension one,
the only normal toric varieties are C*, C and P'.

Example 1.5. Consider V = V(zy — zw) C C*. This contains the torus (C*)® via the map
(tla t27 t3) = (tla t?a t3a ttht:’?l)'

Question: Which Laurent monomials #™ extend to functions V — C? If m = (a,b,c) € M = Z3,
then we get the function on V defined by z%y°2¢. If a, b, ¢ > 0, then this certainly extends. However,
suppose that ¢ < 0 and a + ¢,b+ ¢ > 0. Then, since xy = zw on V, we have

2ybat = wayb<ﬁ)c — goteybtey—c
which shows that ™ extends to a function V' —1>U C. We will see below that the inequalities
a>0,6>0,a+c¢c>0,b4+c>0 (1.1)
define the dual cone corresponding to the normal affine toric variety V. O

Example 1.6. Consider the weighted projective space P(qo, .. .,qn), where qq, ..., g, are positive
integers satisfying ged(qo, - - -,qn) = 1. Recall that

]P)(Q()a R 7q’n) = ((Cn+1 - {0})/N7
where (ag,...,a,) ~ (by,...,b,) <= thereis A € C* with (ag,...,a,) = (ALbg,...,A?b,). The
image of (C*)"*! c C**! — {0} in P(qo, ..., qn) is the quotient (C*)"*!/C*, where we regard C* as
subgroup of (C*)"*! via the map A — (A%, ... \%). By making (qo,...,qn) the first column of a
matrix M € GL,1(Z) and using M to define an automorphism of (C*)"*!, one sees that

(C*)n—l—l/(c* ~ (C*)n
Via this isomorphism, the action of (C*)"*! on C**! — {0} descends to give an action of (C*)" on

P(qo,---,qn). This shows that P(qq,...,q,) is a toric variety. O

We can also cover a weighted projective space by affine open subsets, each of which is an affine
toric variety. We will prove this in LECTURE 2. For now, we will restrict to the case of P(1,1,2).
Here, we have the Zariski open sets U; = {(ao, a1,a2) € P(1,1,2) | a; # 0}.
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Exercise 1.1. Let Uy, U1, Us be the subsets of P(1,1,2) defined above.

a. Show that Uy ~ C? via (a,b,c) — (b/a,c/a?®) and U; ~ C? via (a,b,c) — (a/b,c/b?).

b. Let V = V(zz — y?) C C3. Show that Uy ~ V via (a,b,c) — (a?/c,ab/c,b?/c).

c. Use the map (C*)? — V defined by (t1,t2) — (t2,t1t2,12) to prove that V is an affine toric
variety.

We’ve already seen that P? is a toric variety. Here is a preview of its underlying structure.

Example 1.7. Let’s show that (C*)2 C P? gives the following picture in R?:

(1.2)

A 1-parameter subgroup u € N = Z2 gives a map \* : C* — P?. Since P? is compact, the limit
lim; o A\%(¢) exists in P2, If u = (a,b) € Z2, then

Ne(t) = (1,19, 10).

It is then straightforward to compute that

((1,0,0) a,b>0
(1,0,1) a>0,b=0
(1,1,0) a=0,b>0
: u 1 a by __ — h —
%g%)\ (t) —%1_>m0(1,t ) =4¢(1,1,1) a=b=0 (1.3)
(0,0,1) a>bb<0
(0,1,0) a<0,a<bd
[(0,1,1) a<0,a=b.

The first four cases are trivial. To see how the fifth case works, note that
lim(1,¢%,¢°) = lim(¢%,#*7%,1)
t—0 t—0

since these are homogeneous coordinates. Then a > b and b < 0 imply that the limit is (0,0, 1), as
claimed. The last two cases are similar.
Now observe that (1.2) decomposes the plane R? = N ®z R into 7 disjoint regions:

e The open sets a,b > 0; a < 0,a < b; and a > b,b < 0.

e The openrays a > 0,b=0;a=0,b>0; and a < 0,a = b.

e The point a = b = 0.
The corresponds perfectly with (1.3). We will see in LECTURE 2 that (1.2) is the fan corresponding
to the toric variety P2. O
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1.4. Cones, Duals, and Faces. We will follow Section 1.2 of [17], omitting proofs.

Definition 1.2. A convex polyhedral cone in R" is a subset of the form
o = Cone(S) = {Z)‘”U | Ay > 0} C R,
vES
where S C R" is finite. We say that o is generated by S. Also set Cone(()) = {0}.
Note that o is convez, meaning that z,y € 0 = Az + (1 —A)y € o forall 0 < A <1 and is a
cone, meaning that z € 0 = Az € o for all A > 0. We will see below that o is closed.

Examples of convex polyhedral cones include the first quadrant in R? or first octant in R3. Here
is a less trivial example.

Example 1.8. The cone in R3 generated by e, e2, e; + e3 and eg + e3 is

X

We will see below that this cone is closely related to Example 1.5. 0

It is also possible to have cones that contain entire lines. For example, e;, —e; generate a cone
in R? which is just the z-axis, while e;, —ej, eo generates the closed upper half-plane {(z,y) € R? |
y > 0}. As we will see below, these last two examples are not strongly convez. The largest possible
convex polyhedral cone is R” while the smallest is the trivial cone {0}.

We can also create cones using polytopes, which are defined as follows.

Definition 1.3. A polytope in R" is a subset of the form
P = Conv(S) = {Z,\UU [ X >0, 32, = 1} C R,
veS veS
where S C R” is finite. We say that P is the convex hull of S.
Polytopes include regular n-gons in R? and cubes, tetrahedra, octahedra, etc. in R?. We will see

in LECTURE 4 that polytopes play a prominent role in toric geometry. Here, however, we make the
simple observation that a polytope in R" gives a convex polyhedral cone in R**1,

Exercise 1.2. Let P = Conv(S) be a polytope in R" and regard R" as the hyperplane z,; =1
in R"*1. Then let
o={A-(v,1) |ve P, \>0}

Prove that o is a convex polyhedral cone. Hint: Consider Cone(S x {1}).
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This exercise can be generalized to show that a polytope lying in an affine hyperplane not
containing the origin gives a convex polyhedral cone. Be sure you can draw a picture of this.

The dimension of a convex polyhedral cone o, denoted dim o, is defined to be the dimension of
the smallest subspace Ro containing 0. We call Ro the span of o. Note that dimo = dimRo.

Exercise 1.3. The dimension of a polytope P C R" is the dimension of the smallest affine space
(= translate of a subspace) containing P. Now let 0 C R**! be the cone determined by P as in
Exercise 1.2. Prove that dimo = dim P + 1. O

Given a convex polyhedral cone o C R”, its dual cone is the set
oV ={u e R"™ | (u,v) >0 for all v € 5},

where R™ is the dual space of R* and (u,v) is the natural pairing between u € R” and v € R™*.
If uw # 0 is in R™, then we get the hyperplane

H,={veR"|(u,v) =0}

and the closed half-space
Hf ={veR"| (u,v) > 0}.

Exercise 1.4. Let 0 = Cone(S) be a convex polyhedral cone in R".

a. Prove that ¢V = {u € R"™ | (u,v) > 0 for all v € S}.
b. Each v € R" gives a closed half-space H,” C R"*. Prove that 0¥ = (,cq H, -

Here are some examples of dual cones.

Example 1.9. If 0 = Cone(ey, ez, e1 + e3,e2 + e3) is the cone of Example 1.8, then part a of
Exercise 1.4 implies that oV is defined by the inequalities (1.1) from Example 1.5. O

Example 1.10. If 0 = Cone(e; + eg,e3) C R2, then o and its dual can be pictured as follows:

1

acone g in the plane the dual coneof o

By part b of Exercise 1.4, the dual is H

e1t+es

NH ;; O
We next discuss the faces of a cone.

Definition 1.4. The set 7 = H, No is a face of the convex polyhedral cone o if u € R™ \ {0}
and o C H; . We regard o as a face of itself. Faces 7 # o are called proper faces.

Since o C H,f if and only if u € oV, it follows that the faces of o are given by H, No as u varies

over the nonzero elements of the dual cone oV.

Lemma 1.5. Let o = Cone(S) be a convex polyhedral cone.

(1) Ewvery face of o is a convex polyhedral cone.
(2) An intersection of two faces of o is again a face of o.
(3) A face of a face of o is again a face of o.



LECTURES ON TORIC VARIETIES 15

We say that 7 is a facet of a convex polyhedral cone ¢ is 7 is a face of codimension 1, i.e.,
dim7 = dimo — 1. One can prove that every proper face of ¢ is the intersection of the facets
containing it. When we represent a facet as 7 = H, N o, we say that u is an inward-pointing facet
normal or simply a facet normal.

Example 1.11. In Example 1.10, the generators of ¢ lie on the thick lines and the facet normals
are represented by the two arrows. Note how the facet normals of o become the generators of its
dual, while the facet normals of the dual generate o. 0

This example generalizes as follows.

Theorem 1.6. Suppose that o C R” is an n-dimensional convex polyhedral cone such that o # R™.
Let the facets of o be 7, = H,, N o, where 0 C H{; fori=1,... 5. Then

oc=H} N---NH; and ¢" = Cone(u,...,us).

Furthermore, (cV)V = 0.

1.5. Strongly Convex Polyhedral Cones. A convex polyhedral cone o is strongly convex if
o N (—o) = {0}. There are several equivalent ways to think about strong convexity.

Proposition 1.7. Let 0 C R" be a convex polyhedral cone. Then the following are equivalent:
(1) o is strongly convez, i.e., o N (—0o) = {0}.
(2) o contains no positive-dimensional subspace.
(3) {0} is a face of o.

(4) dimoV = n.

One corollary of this proposition is that if ¢ is strongly convex of maximal dimension, then so is
oV. The cones pictured in Examples 1.8 and 1.10 satisfy this condition.

Exercise 1.5. Suppose that ¢ C R” is a convex polyhedral cone of dimension d, and assume that
W =oN(—o) has dimension r > 0. Let 7 = (o + W)/W C R*/W.
a. Prove that 7 is a strongly convex polyhedral cone in R" /W.
b. Prove that the map 7 +— (7 + W)/W induces a one-to-one inclusion-preserving map from
faces of o to faces of 7.

Exercise 1.6. Let P C R” be a polytope and let ¢ C R®*! be the convex polyhedral cone
constructed in Exercise 1.2. Prove that o is strictly convex.

An edge (or ray) of a convex polyhedral cone o is a 1-dimensional face. When o is strongly
convex, we can use the edges to get an especially nice set of generators.

Proposition 1.8. Let o be a strongly convez polyhedral cone with edges p1, ..., ps. Pickv; € p;\{0}
and set S = {v1,...,vs}. Then:

(1) o = Cone(S).
(2) S is minimal in the sense that if T is any generating set for o, then there are \; > 0 such
that {\jv1,...,Asvs} CT.
In the situation of Proposition 1.8, we call S a minimal generating set of o.

Exercise 1.7. Let o be the cone over a polytope P as in Exercise 1.2. We define v € P to be
a vertez if there is an affine half-space H* containing P such that {v} = H N P, where H is the
boundary of H*. Show that the vertices of P form a minimal generating set of o.

Exercise 1.8. (This exercise is from [17].) Consider the cone ¢ C R* generated by the standard
basis e1, es, €3, e4 together with the vectors —e; + 2 ijéi ej for 1 <i <4
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a. Prove that ¢ is strongly convex, has dimension 4, and has 8 minimal generators.
b. Let e} be the dual basis of R¥*. Prove that the minimal generators of o¥ are the 12 vectors
2e] +ej fori # j.

1.6. Rational Polyhedral Cones. Given a lattice N with dual M, we get dual vector spaces
Nrg=N®zR~R"and Mr = M ®z R ~ R"™. Everything we’ve said about cones in R" carries
over to cones in Nr. But we now have one more ingredient, namely the lattice N C Ngr. This leads
to the following definition.

Definition 1.9. o C Ng is a rational polyhedral cone if o = Cone(S) for a finite set S C N.

The cones pictured in Examples 1.8 and 1.10 are rational. Also, if ¢ is a rational polyhedral
cone, then so are its faces and its dual.

The theory of toric varieties uses strongly convex rational polyhedral cones. These cones have
uniquely determined minimal generated sets, described as follows. In Proposition 1.8, we saw that
given such a cone o, we get minimal generators by picking generators for each ray p of o. Since
p is a rational ray, it follows that the semigroup p N N is generated by a unique element of the
intersection, denoted v,. The ray generators give the unique minimal rational generating set of a
strongly convex rational polyhedral cone.

This implies a nice uniqueness result for convex rational polyhedral cones of maximal dimension.
Namely, if u,...,us € M are the minimal rational generators of ¢V, then

— g+ +
o=Hin---NH,

where the facet normals u; € M are now uniquely determined.
The following definition will be important when studying smooth and simplicial toric varieties.

Definition 1.10. A strongly convex rational polyhedral cone o C N is regular (resp. simplicial)
if its minimal generators form part of a Z-basis of N (resp. R-basis of Ng).

In the literature, regular cones are sometimes called “smooth.” The cone pictured in Example 1.8
is neither regular nor simplicial, though the cones in Example 1.10 are both regular.

1.7. Affine Toric Varieties. If 0 C Np is a rational polyhedral cone, then we define
Sy =0c"NM.

One easily sees that S, is a semigroup under addition with 0 € S, as the additive identity. We also
have Gordan’s Lemma, which asserts the following.

Proposition 1.11. Ifo C Ng is a rational polyhedral cone, then S, = VN M is a finitely generated
semigroup.

We now associate to S, its semigroup algebra C[S,], which is defined as follows. As a C-vector
space, C[S,] has S, as a basis, with the basis vector corresponding to m € S, written symbolically
as x™. Thus elements of C[S,] are formal linear combinations ), s amx™, where only finitely
many a,, are nonzero, and the product in C[S,] is determined by the “exponential rule”

’

™ - Xm’ _ Xm+m

and the distributive law. Thus x° = 1 is the multiplicative unit of S,, and x™ € S, is invertible if
and only if —m € S,.

By Gordan’s Lemma, S, has finitely many generators my, ..., m,, which implies that C[S,] is
generated by x™,...,x™  as a C-algebra. We also remark that if we pick a Z-basis of N, then
identifying x™ with t™ € C[t',..., 5] gives an inclusion

C[S,] c Clttt, ..., tH (1.4)
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of C-algebras. It follows that C[S,] is an integral domain that is finitely generated as a C-algebra.
This allows us to make the following fundamental definition.

Definition 1.12. Let ¢ C Ng be a strongly convex rational polyhedral cone. Then the irreducible
affine variety
Vs = Spec(C[S;])
is the affine toric variety associated to o.
In the following examples of affine toric varieties, we let N = M = Z" with standard basis
€1y---45€En.

Example 1.12. The cone 0 = Cone(ey, ..., e,) C R" is self-dual, so that 0¥ = . Thus ¢V NZ" =

Z%,, and the resulting semigroup algebra is clearly Clz1,...,z,]. It follows that V, = C". O
Example 1.13. Fix an integer 0 < d < n and let 0 = Cone(es,...,eq) C R*. One computes
that 0¥ = Cone(ey,...,eq, teq,,--.,te,), so that C[S,] = C[xl,...,wd,xdiil,...,x#]. Since
Spec(Clz]) = C and Spec(C[z,z~!]) = C*, it follows that V, = C¢ x (C*)"~4. O

Example 1.14. The cone o = {0} clearly has 6" = R”, so that the resulting semigroup algebra, is
(C[mfl, ..o, xY. Tt follows that V,, = (C*)™. s

Example 1.15. Let 0 = Cone(er, ea,e1 + e3,e2 + e3) C R® be the cone from Example 1.8. The
inward pointing normals of the facets of o are
my = (1’070)7 mo = (Oa 150)7 m3 = (0705 1)7 my = (]-a ]-a _1)3

which by Theorem 1.6 means that m,ms,m3, ms generate ¢V. In this case they also generate
S, = 0V NZ3. To describe V,, = Spec(C[S,]), we use the C-algebra homomorphism C[z, y, z, w] —
C[S,] defined by

= t™ y =t 2 1w £

Then zy — zw — 0 since m1 + my = m3 + my4, and one proves without difficulty that
Clz, y, z, w]/{zy — zw) = C[S,]-

It follows that V, ~ V(zy — zw) C C*.

In Example 1.9, we noted that oV is defined by the inequalities (1.1) from Example 1.5. Recall
that in this example, we asked which Laurent monomials extend to functions on V(zy — zw). We
now see that S, = 0¥ N Z? answers this question and determines the variety completely.

Exercise 1.9. In Exercise 1.1, you showed that P(1,1,2) is the union of affine toric varieties
Up~C?, Uy ~C?% and Uy ~ V(zz — y?) C C3. Show that V(zz — y?) is isomorphic to the affine
toric variety V, for the cone o = Cone(er, e; + 2e3).

Our final task is to prove that V is a toric variety in the sense of Definition 1.1.

Theorem 1.13. Let 0 C Nr ~ R" be a strongly convex rational polyhedral cone and let V, =
Spec(C[S,]), So =¥ N M. Then V, is a normal toric variety of dimension n.

Proof. By Gordan’s lemma, semigroup S, is finitely generated, say by my1,...,m,. Combining this
with (1.4), we get C-algebra homomorphisms

Clat, .., z] 2> CS,] > O, .., 651,

where « is surjective and 8 uses an isomorphism M =~ Z™ to identify the character x™ with the
Laurent monomial £™. Letting I denote the kernel of «, we obtain maps of varieties

v, v c .
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To understand 8*, note that by Proposition 1.7, ¥ has dimension n since ¢ is strongly convex.
Hence we can pick myg in the interior of oV. Given any m € M, one easily sees that m + fmg € oV
for £ > 0. Hence t™ = % € C[Sy |tmo, where C[S,]ymo is the localization defined in Section 0.4
of the BACKGROUND. Thus § factors

C[S,] C C[S,]imo = CIM] ~ C[tL, ... 51,

so that we can regard (C*)™ as a Zariski open subset of V,, via §*. It follows that dimV,, = n.
The above map (C*)" — C" is given by

(t1yenytn) — (™, ™). (1.5)
This is injective and the action of (C*)™ on itself extends to an action of (C*)™ on C" defined by
(e rtn) - (@1, 20) = (™, £ ).

Since (C*)™ is Zariski dense in V, it follows that V(I) is the Zariski closure of the image of (1.5).
This in turn implies that V, is stable under the above (C*)™-action. This proves that V, satisfies
the conditions of Definition 1.1 and hence is a toric variety.

It remains to prove that V, is normal, i.e., that C[S,] is integrally closed. Recall that oV =
Ni=1 H,, where vy,...,vs are the minimal generators of o. If we set 7; = Cone(v;), then

C[S,] = Clo¥ N M] = ﬂ ClrY N M] = ﬁ ISy, ).

i=1
Since v; can be taken to be the first element of a Z-basis of N, Example 1.13 shows that
C[S’H] = (C[.’L‘l,.’l,‘étl, tee 3'7"7:1:1]'

The ring on the right-hand side is easily seen to be a UFD and hence is normal. Then the same
is true for C[S;,]. It follows that C[S,] is normal since an intersection of normal domains with the
same field of fractions is normal. O

The above proof gives a concrete way to think about the affine toric variety V,,. Namely, gener-
ators mq,...,m, of S, = dV N M give the monomial embedding

cH" —C
from (1.5). Then Vj is the Zariski closure of the image of this map. The proof also describes how
(C*)™ acts on V,. We will generalize this approach in LECTURE 3 when we construct (possibly
non-normal) affine and projective toric varieties using the Zariski closure of monomial maps. A
more abstract way to show that V; is a toric variety is given in Section 1.3 of [17].
Theorem 1.13 describes all normal affine varieties that are toric. Here is the precise result.

Theorem 1.14. Let V' be an affine variety that is also a toric variety. Then V is isomorphic to
Vs = Spec(C|[S,]) for some strongly convez rational polyhedral cone o if and only if V is normal.

Here is an exercise to illustrate the role of normality.

Exercise 1.10. The toric variety C = V(y? — z3) from Example 1.4 contains C* via ¢ — (t2,¢3).

a. Show that C is isomorphic to the affine variety Spec(C[S]), where C[S] is the semigroup
algebra of the semigroup S = {0,2,3,...} C Z.

b. In general, a subsemigroup S C M is saturated if km € S implies m € S for all m € M and
k > 0 in Z. Prove that oV N M is saturated when o is a rational polyhedral cone in Ng.

c. Prove that the semigroup S of part a is not saturated.

Exercise 1.11. Let S C M be a finitely generated subsemigroup. Prove that C[S] is normal < S
is saturated < S = oV N M for some rational polyhedral cone o C Ng.
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LECTURE 2. THE TORIC VARIETY OF A FAN

We define the toric variety of a fan and then discuss the basic properties of toric varieties.

2.1. Fans and Their Toric Varieties. In LECTURE 1, we defined the affine toric variety V, of
a strongly convex rational polyhedral cone ¢ C Ng ~ R". Our next step is to create more general
toric varieties by gluing together affine toric varieties containing the same torus T'(N) ~ (C*)".
This brings us to the concept of a fan, which is defined to be a finite collection ¥ of cones in Ny
with the following three properties:

(1) Each o € ¥ is a strongly convex rational polyhedral cone.

(2) If 0 € ¥ and 7 is a face of o, then 7 € 3.

(3) If 0,7 € X, then o N7 is a face of each.

The basic idea is that a fan ¥ encodes the information needed to glue together the affine toric
varieties V,, 0 € X to create an abstract variety Xy. To make this work, we need to study how
affine toric varieties fit together.

Given a fan ¥, let 0 € ¥ and let 7 be a face of 0. Then 7 C o induces C[S,] C C[S;], which
gives a map V, — V,. To understand this map, note that 7 = H,, N o for some m € 6V N M = S,.
Then one can prove that S; = S, + Z>¢ - (—m), which implies that C[S,] C C[S;] can be written

C[Ss] C C[Ss]ym = C[S,].
Thus V; is naturally isomorphic to the Zariski open subset of V,; defined by x™ # 0.
Cones 0,0’ € ¥ have the common face o No’. In this case, we get open immersions
Vaﬂa’ — VO’
nggl — Vgl.
The images of these maps will be denoted V,,+ and V,, respectively. Then we have an isomorphism
Goo' * Vaa’ = Va’a-
This gives gluing data {V,, V,4, oo’ } as described in Section 0.12 of the BACKGROUND.

Definition 2.1. Given a fan ¥ in Nr, Xy, is the abstract variety constructed using the above
gluing data.

In more down-to-earth terms, Xy is constructed from the affine varieties V,, o € X, by gluing
V, and V, along their common open subset V,~, for all o,0’ € X.

Theorem 2.2. The variety Xx, is a separated normal toric variety.

Proof. Each o € ¥ gives an affine open subset V, C Xx. In particular, the trivial cone {0} € ¥ gives
an open subset T'(N) C Xy. Furthermore, since {0} is a face of every o € X, we get compatible
inclusions T'(N) C V,. Then:
e Since T'(N) is Zariski dense in each V,, it is Zariski dense in Xy. Thus Xy, is irreducible.
e Since T'(N) acts on each V, and the gluing data is T'(N)-equivariant, T'(N) acts on Xx.
This proves that X satisfies Definition 1.1 from LECTURE 1.

It is easy to see that X is normal since normality is a local property and each V, is normal.
Finally, we need to show that Xy is separated, i.e., that the diagonal map Xy, — Xy X Xy has
closed image. By looking at the gluing data, this reduces to checking that the diagonal map
Vonot = Vo X Vi is a closed embedding, which is true provided that the natural map

C[SO'] Ac C[Sa’] - (C[Saﬂa’]
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is surjective. This follows from the equality
Saﬂa’ =5, + Sa’

proved in Section 1.2 of [17]. O

In [23, §1.2, Thm. 5], it is shown that all normal toric varieties arise in this way, i.e., every normal
toric variety is determined by a fan. These toric varieties are sometimes called torus embeddings,
and [17] and [26] call the fan A. Also, the toric variety determined by ¥ is variously denoted Xy,
X (%), Z(¥), and Tyemb(X). Furthermore, polytopes (which we will encounter in LECTURE 4) are
denoted P, O, and (just to confuse matters more) A. The lack of uniform notation is unfortunate,
so that the reader of a paper using toric methods needs to look carefully at the notation.

2.2. Examples. Here are some examples of toric varieties.

Example 2.1. Given o C Ng, we get a fan by taking all faces of ¢ (including o). One easily sees
that the toric variety of this fan is the affine toric variety V. O

Example 2.2. The fans for P? (on the left) and P! x P! (on the right) are as follows:

Here, the 1-dimensional cones are indicated with thick lines, and 2-dimensional cones (which extend
to infinity) are shaded. Thus the fan for P? has three 2-dimensional cones, while the fan for P! x P!
has four such cones.

To see that the fan on the left gives P?, observe that the 2-dimensional cones o1, 09,03 are
generated by bases of Z2. As noted in Example 1.12 from LECTURE 1, this implies that the affine
toric varieties V,,, are copies of C?. By checking how these fit together along Voino;, one gets the
usual way of constructing P? by gluing together three copies of C2. Note that this fan appeared
earlier in (1.2) of Example 1.7 from LECTURE 1.

A similar argument shows that the fan on the right gives P! x P!, 0
Example 2.3. Let e1,...,e, be a basis of N = Z", and set ¢y = —e; —--- —e,. Then we get a fan
by taking the cones generated by all proper subsets of {eg,e1,...,e,}. We leave it as an exercise

for the reader to show that the associated toric variety is P*. When n = 2, this gives the fan on
the left in Example 2.2. O
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Example 2.4. Let e, ey be a basis of N = Z2, and set ey = —e; — 2e5. This gives the fan X:

We claim that the corresponding toric variety Xy is the weighted projective space P(1,1,2). To see
this, let 0gp = Cone(es, e2), 01 = Cone(ey, €2), and o9 = Cone(eg, e1). Then Xy is the union of the
affine toric varieties V5, ¢ = 1,2,3. Then V,;, >~ V,;, ~ C? since o and o9 are smooth. However,
o9 = Cone(—e; — eg, e1), which is GLg(Z)-equivalent to the cone Cone(e;,e; + 2e2) of Exercise 1.9
from LECTURE 1. Hence the V,, are isomorphic to the affine open subsets U; of Example 1.1 from
LECTURE 1. Since they glue the same way, we obtain Xy ~P(1,1,2). O

Example 2.5. Let qo,. .., gn be positive integers with gcd(qo, - . -, gn) = 1. The fan for the weighted
projective space P(qo,...,q,) is described as follows. Let N = Z"*!/Z(qq,...,q,) and let v; € N
be the image of the standard basis vector e; € Z"t! for i = 0,...,n. Then qyvg + -+ + ¢uvp = 0,
and we get a fan in Ny by taking the cones generated by all proper subsets of {vg,v1,...,v,}.
When ¢; = 1 for all 4, the vectors vy, ..., v, form a Z-basis of N and vg = —v; —+++ — v,. Thus
we recover the fan of Example 2.3, which gives P" = P(1,...,1). On the other hand, when n = 2
with ¢o = g1 = 1 and ¢ = 2, the vectors vy, vy form a Z-basis of N and vy = —v; — 2v. Thus we
recover the fan of Example 2.4, which gives P(1,1,2). For general qo, ..., g, one can show that the
above fan gives P(qo, ..., qn). O

Exercise 2.1. Let ¥; and 32 be fans in (N;)g and (N2)r respectively, and let N = N; & Ns.
Prove that the set of cones

Y={o1 x09|0; €%, i=1,2}

is a fan in Nk and that Xy is naturally isomorphic to the cartesian product Xy, x Xx,. Also
explain how the fan on right in Example 2.2 relates to this construction.

There are many other nice examples of toric varieties, including Hirzebruch surfaces, rational
normal scrolls, and equivariant projective bundles over projective spaces. We will see in LECTURE 4
that every lattice polytope in MR determines a projective toric variety.

2.3. Orbits and Faces. We next consider the combinatorial structure of normal toric varieties.
The basic idea is that we can generalize the relation between cones and limits discussed in Exam-
ple 1.7. More precisely, there are one-to-one correspondences between the following sets of objects:

e The limits limy o A*(t) for u € |3| = {J, 5, o (|3] is the support of X).
e The cones o € 3.
e The orbits O of T on X
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The correspondences work as follows: an orbit O corresponds to a cone o if and only if lim;_,o A¥(¢)
exists and lies in O for all u in the relative interior of o. If orb(o) is the orbit corresponding to o,
then one has

e dimo + dimorb(o) = n.

e orb(o) C orb(7) if and only if 7 C 0.
In particular, fixed points of the torus action correspond to n-dimensional cones in the fan.

If we work with the orbit closures orb(c), we get similar correspondences. In addition, each orbit
closure is a toric variety, and its fan can be described as follows. Given o, let N, = Ro NN, where
Ro is the span of o (see Section 1.4 of LECTURE 1). Then N/N, is naturally dual to o N M.
Further, any cone 7 € ¥ containing o gives the cone

T=(1+Ro)/Ro = (1 4+ (N;)r)/(Ns)r C (N/Ny)R-

These cones form a fan in (N/N,)g which gives the toric variety orb(c). Geometrically, this fan is
obtained from the star of o (= all cones of ¥ containing o) by collapsing ¢ to a point in order to
create a new fan in (N/N,)g.

Example 2.6. Subdividing the cone of Example 1.8 from LECTURE 1 gives the following fan:

C

a

The corresponding toric variety X has dimension 3, so that the orbit corresponding to the ray o
pictured above has dimension 2. The star of ¢ is the whole fan, and when we collapse ¢ to a point,
the new fan we get is clearly the fan on the right in Example 2.2. It follows that orb(c) is P! x P!.

We remark that the affine toric variety of the original cone (before subdividing) is singular. The
subdivided cone is a resolution of singularities of the affine toric variety. This, however, is not the
simplest way to resolve the singularity. See [6] for other resolutions and a proof of resolution of
singularities for arbitrary toric varieties. O

2.4. Properties of Toric Varieties. Here are some basic properties of normal toric varieties.
Proofs can be found in [26, Thm. 1.11, Thm. 1.10 and Cor. 3.9].

Theorem 2.3. Let Xx, be the toric variety determined by a fan ¥ in Nr. Then:
(1) Xx is complete <= ¥ is complete, i.e., |X| = Ng.
(2) Xy is smooth <= every o € X is a smooth cone, i.e., is generated by a subset of a Z-basis
of N.
(3) Xy is Cohen-Macaulay.
(4) Xy, has at worst rational singularities.
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Remark 2.4. Here are some comments on Theorem 2.3.

(1) The term “complete” applies varieties over any field (see [15, 21]), though over C, “complete”
is equivalent to being compact in the classical topology. Thus projective varieties are
complete, though the converse can fail. The books [17, p. 71] and [26, pp. 85-86] describe a
classic example of a smooth toric variety that is complete but not projective. In LECTURE 4
we will give a criteron for Xy to be projective.

(2) Example 1.13 shows that Xy is smooth when every cone in ¥ is smooth.

(3) The Cohen-Macaulay property of a toric variety Xs; is useful, for it means that Grothendieck
duality is especially nice for Xyx. See [26, Section 3.2] for a careful explanation, and for a
discussion of how Cohen-Macaulay relates to depth, see [13, Ch. 18]

(4) Rational singularities are a well-known class of singularities characterized by the vanishing
of certain cohomology groups.

2.5. Finite Quotient Singularities. Let G be a finite subgroup of GL,,(C). Then G acts on both
C" and C[z1,...,z,], and the quotient C" /G is the set of G-orbits. By Chapter 7 of [9], we can
turn this set into an affine variety as follows.

Proposition 2.5. Given a finite subgroup G C GL,(C), let Clz1,...,2,]¢ C Clz1,...,T,] be the
subring of invariant polynomials. Then there is a natural bijection C" /G ~ Spec(C[zy, ..., z,]%).

Understanding the structure of Clz1,...,z,]¢ is one of the goals of invariant theory.

Definition 2.6. A point p of a variety X is a finite quotient singularity if there is a finite
subgroup G C GL,,(C) such that p € X is analytically equivalent to 0 € C*/G. Then X is quasi-
smooth or has finite quotient singularities if every point of p is a finite quotient singularity.

(By analytically equivalent, we mean a bijection between classical neighborhoods of the two points
such that the map and its inverse are represented by convergent power series.)

Note that the definition of finite quotient singularity allows G to be the trivial subgroup of
GL,,(C). It follows that any smooth variety is quasismooth. Here is an example to show that the
converse is not true.

Example 2.7. Let G = {+I} C GLy(C). If we think of C? as Spec(C[t1,%3]), then Clt;,5]¢ =
C[t?,t1to, 2], which is the semigroup algebra of the cone o = Cone(ey,e; + 2e2). You showed in
Exercise 1.9 that the corresponding affine toric variety is V = V(zz — 4?) C C3. Thus C?/G ~ V.
It is easy to check that the origin is the unique singular point of V. Thus V is quasismooth but
not smooth.

We also have the following basic result.
Proposition 2.7. Let G C GL,(C) be a finite subgroup. Then C"/G is quasismooth.

The definition of quasismooth guarantees that 0 € C" /G is quasismooth, but one still needs to
show that the other points of C" /G are quasismooth.
In some cases, the quotient C" /G is still smooth, even when G is nontrivial.

Example 2.8. Let C,,, € GL,(C) be the matrix with e™/™ 1,...,1 on the main diagonal and 0’s
elsewhere, and let G = {C!, | 0 < i < m — 1}. Since Clz1,...,7,]% = ClzT, z9,...,2,], we see
that C" /G ~ C".

A matrix in GL,(C) is a complez reflection if it is conjugate to the matrix C,, of Example 2.8,
and G C GL,(C) is a complez reflection group if it is generated by complex reflections. The
Shephard-Todd-Chevalley theorem says that C*/G ~ C" if and only if G is a complex reflection

group.
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A finite subgroup G C GL,,(C) is small if it contains no complex reflections other than the iden-
tity. One can prove that if G C GL,(C), then its complex reflections generate a normal subgroup
H such that G/H is isomorphic to a small subgroup of GL,(C). Since C*/G ~ (C"/H)/(G/H)
and C"/H ~ C" by the Shephard-Todd-Chevalley theorem, one can always reduce to the case of a
quotient by a small subgroup.

2.6. Simplicial Toric Varieties. Recall that a rational polyhedral cone is simplicial if its minimal
generators are linearly independent over R. Then a toric variety Xx is simplicial if every cone in
Y. is simplicial.
The main result concerning simplicial toric varieties is as follows.
Theorem 2.8. Let X5 be a toric variety. Then the following are equivalent:
(1) Xy is simplicial.
(2) Xy has finite Abelian quotient singularities, i.e., its singularities are analytically equivalent

to 0 € C*"/G where G C GL,(C) is an Abelian small subgroup.
(3) Xy has finite quotient singularities, i.e., Xy is quasismooth.

We omit the proof, though it is useful to say a few words about (1) = (2). Let 0 C Ngr ~ R"
be an n-dimensional simplicial cone. Then its minimal generators vy, ..., v, generate a sublattice
N' C N of finite index. Let G = N/N' denote the quotient, which is a finite Abelian group. We
claim that there is an action of G on C" such that

Ve =~ C"/G.

To see why, let M’ = Homyz(N',Z), and note that N’ C N induces M C M'. Note that o C (N')r
is a smooth cone, which implies that Spec(Clc¥ N M']) ~ C".
We also have an action of G = N/N' on C[g¥ N M'] defined by

(’U + NI) . Xu’ _ e27ri(u’,'u) Xu"

This induces an action of G on Spec(Clg"Y N M']) ~ C".

The key point is to prove that Clo¥ N M']¢ = C[o¥ N M]. Once we have this, taking Spec gives

V, = Spec(Cle" N M]) = Spec(Cle¥ N M')%) = C"/G,

where the last equality is by Proposition 2.5, and our claim follows.
Example 2.9. Let ¥ be a complete fan in Ng ~ R%2. Then Xy is a complete surface (in fact, as we
will see in LECTURE 4, it is projective). Since 2-dimensional cones are simplicial, we see that Xy, is
quasismooth. Furthermore, each 1-dimensional cone is smooth since it is generated by a primitive
element of N (meaning that it is not of the form fu for v in N and £ > 1 in Z). Hence the only

singular points of Xy are the fixed points of the torus action corresponding to those 2-dimesional
cones of 3 which are not smooth.

2.7. Changing the Lattice. Suppose that N is a lattice and N’ C N is a lattice of finite index.
This implies that N, = Ng, and one also sees that a cone o is strongly convex rational polyhedral
in Ng if and only if it has the same property in Ni. When o satisfies these conditions, we get affine
toric varieties

Von = Spec(Clo¥ N M))
Von' = Spec((C[UV n M)

where as above M’ = Homyz(N',Z) and M C M'. The latter induces an inclusion Clg¥ N M] C
CleV N M'], which in turn gives a map

VU,NI — Va,N-
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On level of tori, this restricts to the map T'(N') — T'(N) coming from N’ C N. Since C is divisible
and N/N' is finite, it is easy to see that T(N') — T(N) is surjective with kernel isomorphic to
N/N'. Hence the action of T'(N') on V, nv induces an action of G = N/N’ on V, n+. Generalizing
the argument given above, one finds that

VmNI/G >~ Va,N- (2.1)

Even more generally, if ¥ is a fan in Ng, then it is also a fan in N, and G = N/N' acts on
Xx n with quotient
XE,N’/G =~ XE,N- (22)

Example 2.10. In Example 2.5, we constructed a fan ¥ giving P(qo, - . - , ¢, ) using vectors vy, ..., v,
in the lattice N = Z"*'/Z(qo,-..-,q,)- Let N' C N be the sublattice generated by w; = g;v; for
0 <7 <mn. Then )" ,gv; = 0 implies that ) " ;w; = 0, so that wp = —w; — -+ — wy, where
w1,. .., w, form a Z-basis of N'. It follows that Xy n» = P" while X5, y = P(qo,..-,¢qn). Hence
the quotient map (2.2) shows that if we set G = N/N', then

I[Dn/G = ]P)(qm tee aQ'rL)
You should check how this generalizes Exercise 0.2 from the BACKGROUND. O
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LECTURE 3. HOMOGENEOUS COORDINATES AND TORIC IDEALS

In addition to the classic method of defining toric varieties by gluing together affine toric varieties
(as done in LECTURE 2), two other techniques for constructing toric varieties have been given in
recent years. These methods are:

e Generalized homogeneous coordinates.
e Toric ideals.

3.1. Weil Divisors on Toric Varieties. We saw in Section 2.3 of LECTURE 2 that the rays (i.e.,
1-dimensional cones) of a fan ¥ in Nk correspond to the codimension 1 orbit closures in the normal
toric variety Xy. If 3(1) is the set of all rays of ¥, then we will let D, denote the irreducible
torus-invariant divisor corresponding to p € X(1). Note that the torus of Xy is T'(N) = X»\U, D,
(in general, we use |J,, >, etc. to denote union, summation, etc. over all p € X(1)).

There is a nice relation between the divisors D, and the characters x coming from m € M.
Since x™ maps T to C*, we can regard x™ as a rational function on Xy which is nonvanishing on
T. Hence the divisor of x™ is supported on |J » Dp- Since Xy is normal and D, is irreducible, the
order of vanishing ordp, is defined (see Section 0.14 in the BACKGROUND). By [17, Sect. 3.3], we
have the wonderful formula

ordp, (X™) = {m, v,).
where, as in Section 1.6 from LECTURE 1, v, is the unique generator of p N N for p € £(1). It
follows that the divisor of x™ is given by

div(x™) = E,;(Tna"’p)Dp- (3.1)

Another useful fact proved in [17, Sect. 3.4] is that the torus-invariant divisors generate the Chow
group A,_1(Xx) of Weil divisors modulo linear equivalence (see Section 0.15 in the BACKGROUND).
In fact, we get an exact sequence

M -5 @®,ZD, s 4,1 (X5) — 0, (3.2)

where « is defined by (3.1) and 3 is the map taking a Weil divisor to its divisor class in the Chow
group. Furthermore, if the rays of (1) span Ng, then « is injective, so that (3.2) becomes a short
exact sequence in this case.

Example 3.1. Consider P! x P!. Using the fan on the right in Example 2.2 from LECTURE 2,
we see that the n,’s are v1 = e1,v2 = —e1,v3 = e2,v4 = —ey. If the corresponding divisors are
D1, Dy, D3, Dy, then the exact sequence (3.2) becomes

0— 222 @ ,zD; -5 72— 0,

where
a(a,b) = aDy —aDy + bD3 — bDy, (3.3)
BlaiD1 + -+ +asDy) = (a1 +az,a3 + aq). '
We will return to this example several times during the lecture. O

Example 3.2. For the weighted projective space P(qo,...,qn) of Example 2.5, the lattices are
N = Z""Y/Z(qq,-..,q,) and M = Homgz(N,Z). It follows that M = Z(qy,-..,qn)", which gives
the exact sequence

0— M -2zt Lyz o,
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where « is the inclusion Z(qq, . .., q,)~ C Z™t! and B is dot product with (qo, .. .,q,). If we replace
7™ with @, ZD;, then we obtain (3.2) for weighted projective space. O

3.2. The Homogeneous Coordinate Ring. We begin with the first construction on our list,
which concerns homogeneous coordinates for toric varieties. Returning to our basic example of P,
the usual homogeneous coordinates give not only the graded ring Clzy, . . ., z,] but also the quotient
construction P? o~ (C**! \ {0})/C*. Given an arbitrary toric variety Xs;, we can generalize this as
follows. For each p € ¥(1), introduce a variable z,, which gives the polynomial ring

S =Clz,: p € Z(1)].
To grade this ring, note that a monomial prz” gives a divisor D = )  @pDp- If we write the
monomial as z, its degree is defined to be deg(z?) = B(D) € A,_1(Xx), where 3 is the map from
(3.2) which takes a divisor to its class in the Chow group. The ring S with this grading is called

the homogeneous coordinate ring of Xs. Note that when Xy is smooth, the grading is by Pic(Xy)
(see Section 0.5 from the BACKGROUND).

Example 3.3. We studied P' x P! in Example 3.1, where the divisors corresponding to elements
of (1) were denoted D1, Do, D3, D4. If the corresponding variables are z1, x2, 3,24, then we get
the ring S = C[z1, 79, T3, 24)- This is graded by the Picard group, which is Z? in this case. Using
(3.3), we see that
deg(xtflwg%g%?) = ((],1 + a2,a3 + a4)7

which is precisely the usual bigrading on C[z1,z9;x3, 4], where each graded piece consists of
bihomogeneous polynomials in 1,z and x3,z4.

More generally, for P x P, this construction gives S = Clxg,...,Zn;Y0,-- -, Ym] with the usual
bigrading. 0

Example 3.4. For P(q,...,qn), the exact sequence (3.2) is described in Example 3.2. Here,
the primitive generators of the rays are vy,...,v,, corresponding to the divisors Dy,..., D, and
variables g, ..., T,. Since z; = 2P, we see that degz; = ¢; since the map S is dot product with
(qo, - --,qn)- Hence we recover the weighted grading of C[zy, ..., z,]. O

We can also use the variables z, to give coordinates on Xx. To do this, we need an analog of
the “irrelevant” ideal (xo,...,z,) C Clzo,...,z,]. For each cone o € 3, let 2% be the monomial

2’ = Hp¢axp’
and then define the irrelevant ideal B C S to be
B=(z%|0€xn).
When X is the fan giving P", the reader should check that B = (zg, ..., Zp)-

3.3. The Quotient Construction. The idea is that Xy should be a quotient of C*(1) \ V(B),
where V(B) ¢ C*() is the variety of the irrelevant ideal B. The quotient is by the group G, which
is defined to be

G= HomZ(An_l(Xg), (C*)

Note that applying Homgz(—,C*) to (3.2) gives the exact sequence
1— G — (€)™ — T(N) (3.4)

since T(N) = N ®z C* = Homgy(M,C*). This shows that G acts naturally on C>() and leaves
V(B) invariant since this subvariety consists of coordinate subspaces.

The following representation of Xy was discovered independently by a variety of people (see [5]
for references and a proof).
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Theorem 3.1. Assume that Xy is a toric variety such that (1) spans Nr. Then:
(1) X is the universal categorical quotient (C=(V) \ V(B))/G.
(2) Xy is a geometric quotient (C*M) \ V(B))/G if and only if ¥ is simplicial.

The “geometric quotient” mentioned in part (2) is the algebro-geometric analog of the usual
idea of quotient under a group action, where elements of the quotient correspond to orbits. The
“universal categorical quotient is more subtle. In the case of an affine variety Spec(R), this quotient
is Spec(R%), where RY is the ring of invariants under the action of G on R. We will see an example
of this below.

Under the hypotheses of the theorem, one can define Xy to be the quotient ((CE(I) \V(B))/G.
To see why, note that (3.4) is short exact in this case, so that the torus T'(N) is the quotient
(C)*W/@. Thus

T(N) = (C)*W/G c (C*V\V(B))/G.
Furthermore, since the “big” torus (C*)*() acts naturally on C*(1) \ V(B), it follows that T'(N)
acts on Xy. Quotients preserve normality, so that all of the requirements of being a normal toric
variety are satisfied by the quotient in Theorem 3.1.
Before giving examples of Theorem 3.1, we explain how to compute V(B) and G explicitly:

e Ray generators v, ,...,v,, form a primitive collection (this terminology is due to Batyrev)
if they don’t lie in any cone of ¥ but every proper subset does. Then one can show that
V(B) = U V(Zpys. .oy 2p,)-

Upq y-+,Ups Primitive

e If we write the ray generators as v1,...,v,, r = |X(1)|, then

G ={(u1, s pir) | [Ty pd™" =1 for all m € M?}.

7

Hence if m1,...,my is a Z-basis of M, then (u1,...,u,) € G if and only if

Tic™ " = = L™ =1 (35)
Here are the promised examples.

Example 3.5. Continuing our example of P! x P!, the reader should check that the irrelevant
ideal is B = (z1x3, 21274, 223, T2x4) and that v1 = e, v2 = —e; and v3 = eg,v4 = —ey are the only
primitive collections. Then, thinking of CZ(!) as C2 x C2, one has

V(B) = V(x1,22) UV (x3,24) = {0} x C2 UC? x {0}.
To compute (C*)2 ~ G C (C*)*, we note that by (3.5), (1, 2, 43, ) € G if and only if
papy = pspy =1
Hence G = {(1, pt, A\, A) | , A € C*}. Hence the quotient of Theorem 3.1 becomes
(C* x C*\ ({0} x C*UC? x {0}))/(C")?,
which is exactly the way one usually represents P! x P! as a quotient. O

Example 3.6. For P(q,...,q,), the irrelevant ideal is (xg,...,z,) (vo,...,v, is the unique prim-
itive collection!), so that P(qo,...,q,) is the quotient of C**! \ {0} by G ~ C*. However, the
embedding C* — (C*)"*! is determined by 3, which in this case is the map Z"™! — Z given by
dot product with (qo, ..., ¢gn). It follows that

G={(\,..., ") | xeC).

Hence we recover the definition of P(qg, ..., q,) given in Section 0.11 of the BACKGROUND. O
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Example 3.7. Let e1,...,e, be a basis of N = Z", and let ¢ be the cone they generate. The
resulting affine toric variety is C*. The goal of this example is to construct global coordinates for
the blow-up of 0 € C*. A first observation is that if do is the fan consisting of all proper faces of
o, then Xy, = C" \ {0} since the n-dimensional cone o corresponds to the fixed point 0.

Now let ey = e +-- -+ e, and consider the fan 3 whose cones are generated by all proper subsets
of {eg,...,en}, excluding {e1,...,e,}. Let’s first argue that Xy is the blow-up of 0 € C". In %,
consider the ray po generated by ep. This corresponds to a divisor Dy C X5x. We can describe Dy
using the methods of Section 2.3 in LECTURE 2. The star of py consists of all cones of ¥ containing
eo. If we collapse py to a point, we get a fan in an (n — 1)-dimensional quotient of R™, which is
easily seen to be the fan of P*~!. Thus Dy ~ P"~!. Furthermore, if we remove the star of py from
¥, we are left with the fan do from the previous paragraph. It follows that Xy \ Dy = C* \ {0}.
This makes it clear that we have the desired blow-up.

Let z; correspond to the ray generated by e;. Then the homogeneous coordinate ring of Xs
is Clzg,...,z,] where deg(zy) = —1 and deg(z;) = +1 for 1 < i < n. Furthermore, the only
primitive collection is ejy,..., ey, so that V(B) = C x {0,...,0}, and using (3.5), one sees that
(05 - - -, ) € G if and only if

Pop1 = pop2 = - -+ = Hoftn = 1.
Hence G = {(up~ ', pt,...,p) | p € C*} ~ C*, which acts on C>) = C x C* by u- (zg,x) =
(u tmg, ux). Then, given (z¢,x) € C x C* \ V(B), we can act on this point using G to obtain
(o, x) ~¢ (1,zox) ifzo#0
(0,x) ~g (0,ux) if p#0.
It is now easy to see that Xy = (C x C" \ V(B))/G is the blow-up of 0 € C*. This approach gives

global coordinates zg, z1,...,z, for the blow-up (subject to the action of G ~ C*). In terms of
these coordinates, the blow-up map Xy — C" is given by (z¢, z1,...,zy) — (ZoZ1,. .., Tox,) (note
that zox; has degree 0 and hence is invariant under the group action). O

Example 3.8. Let 0 C Ng ~ R" be an n-dimensional cone. Then the representation of V, given
by Theorem 3.1 is of the form C" /G, where r is the number of rays of . This follows because
V(B) = (—a single cone has no primitive collections. Furthermore, there are two cases where G
can be determined explicitly:
e For 0 smooth, G = {1}, so that Theorem 3.1 gives V, = C".
e For o simplicial, G ~ N/N', N' = Zvy + - -+ + Zwvy4+1 (you should check this carefully), so
that by Theorem 3.1, V, is the quotient of C" by the finite group G.

Note that the second bullet is precisely the representation given in (2.1) in LECTURE 2. O

Example 3.9. Let o be the 3-dimensional cone of Example 1.8 from LECTURE 1. By Example 1.15
of LECTURE 1, we know that V, = V(zy — zw) C C*. The ray generators v; = e1, v = ey, v3 =
e1 + e3, vy = eo + ez of o give variables z1, 2, x3,x4. It is straighforward to check that the group
G C (C*)* consists of (A,A"1,A71,X) for A € C* and that in the homogeneous coordinate ring
Clz1, z2, T3, x4], the variables have degrees

deg(z1) = deg(z4) = 1, deg(xs) = deg(z3) = —1.

As in Example 3.8, V, is of the form C*/G, but this is not a geometric quotient since o is not
simplical. Rather, it is a “universal categorical quotient”, which in this case means that

V, = Spec(Clz1, x2, T3, 14]%).
One computes without difficulty that the ring of invariants is

Clz1,x2, x3, :v4]G = Clz1x2, X324, T1T3, T2X4].
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This gives us two ways to think about Vj:

e If my,my, m3, my are the generators of oV from Example 1.15 of LECTURE 1, then we have

an isomorphism
Clzyzo, T34, 173, To24]) ~ Clo¥ N Z4]

defined by z1xo — t™ ,x314 — 172, 123 — 173, x9x4 —> t"4. This shows that the ring of
invariants really does give V.

e The inclusion C[zy,zs,x3,24]% C Clz1, 20, 23,74] induces the quotient map = : C* —
C*/G =V, given by

7T(-Tla r2,T3, $4) = ('TIIQa r3x4,T1T3, '7"2:[4)'

To see how this map differs from an ordinary quotient, let p € V. Then one can show that
77 1(p) is a G-orbit when p # (0,0,0,0), so that most of the time, the categorical quotient
C* /G behaves like an ordinary quotient. However, when p = (0,0,0,0), one sees that

71 (p) = (C x {0} x {0} x C) U ({0} x C x C x {0}).

This shows that the stuff mapping to (0,0,0,0) has dimension 2 and hence consists of
infinitely many G-orbits. O

3.4. Affine Toric Ideals and Monomial Maps. Our second construction of toric varieties uses
toric ideals. Let’s begin with the affine case. Suppose that we have

A:{ml,...,ms}CZn.

This gives Laurent monomials ¢"1,...,{™s, and the map sending y; — t™ gives a homomorphism
Cly1,...,ys] = Clt', ..., tE1]. The kernel of this map is the toric ideal I4.

Example 3.10. Let A = {m; = e1,m2 = e3,m3 = e3,m4 = e +ez—ez} C Z>. In Example 1.15 of
LECTURE 1, we saw that these are the minimal generators of oV NZ3, where ¢ is the 3-dimensional
cone generated by ej,e2,e1 + ez, ea + e3. We also observed that the map z — t"™,y — t"™, 2z —
t™3 w — t™4 has kernel

(zy — zw) C Clz,y, 2z, w].
This is the toric ideal I 4. O

In Example 3.10, the toric ideal is generated by binomials (a binomial is a difference to two
monomials). This is true for all toric ideals. To describe this precisely, note that each a =

(a1,...,as) € Z* can be uniquely written @« = o™ —a~, where o™ and o~ have nonnegative entries
and disjoint support. Then one can prove that the toric ideal I4 C Cly1,...,ys] is given by
+ —
I4= <y°‘ —y* |a=(a1,...,a5) €Z*% Y} jaim; = 0>. (3.6)

A proof of this assertion can be found in [34, Cor. 4.3]. Notice also that the definition of I 4 gives
an injection
Clyn, .o 9s)/Ta — CHEEL, .. 21,
Since the ring on the right is an integral domain, it follows that toric ideals are always prime.
Thinking geometrically, the ideal T4 C Cly1,...,ys| defines an irreducible affine variety V4 C C*.
One can show that V4 is the Zariski closure of the image of the map (C*)" — C° defined by

tes (E™1 L ). (3.7)

Note also that V4 contains a torus (the image of (C*)™ under the map (3.7)), which is Zariski dense
by the definition of V4. Furthermore, the proof of Theorem 1.13 from LECTURE 1 shows that the
action of this torus on itself extends to an action on V4. It follows that V4 is an affine toric variety,
though it need not be normal.
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Example 3.11. For the subset A C Z3 from Example 3.10, V4 is the normal affine toric variety
V,, where o = Cone(ey, e2,e1 + €3, es + e3) is the cone featured in many of our examples. O

Example 3.12. Given A= {f1,...,8s} C Z, we get a monomial curve in C° parametrized by
te (101, ..., 5.

Since % is a character on C*, this gives the affine toric variety V4. Since V4 has dimension 1, it
is non-normal precisely when it fails to be smooth. The simplest example is the cusp parametrized
by ¢+ (t2,1%). Here, the corresponding toric ideal is generated by the binomial y? — 3. O

Example 3.13. Consider the surface in C* parametrized by
(t,u) — (t*, t3u, tu®, ut).
The Zariski closure of the image of this map is V4 for
A=1{(4,0),(3,1),(1,3),(0,4)} c Z*

By Exercise 3.18 of [21, Chapter I], V4 is not normal. One can also show that V4 is not Cohen-
Macaulay (see [33]). O

Projectively, the parametrization given in Example 3.13 defines a twisted quartic curve C' C P3,
which is known to be normal. Hence C is normal but not projectively normal (since projective
normality is equivalent to normality of the affine cone). A surprising number of basic examples in
algebraic geometry are toric varieties in disguise.

According to [34, Prop. 13.5], V4 is a normal toric variety if and only if

NA = Cone(A) NZA,

where Z.A (resp. NA) is the set of all integer (resp. nonnegative integer) combinations of elements
of A. More generally, the normalization of V4 is the affine toric variety V., where o C Ny is the
cone dual to Cone(A) and N is the dual of ZA.

We also note that in the literature (see [32], for example), affine toric ideals are often described
in terms of an n x s matrix A with integer entries. The s columns of such a matrix give the subset
A C Z™ used above. There are two advantages to this approach:

e The description of the toric ideal I4 C Cly1,...,ys] given in (3.6) can be rewritten as
Ia=(y*— 9| a,b € N°, Aa = Ab). (3.8)

e The map (C*)" — (C*)® C C* defined in (3.7) is obtained by applying Homyz(—, C*) to the
map Z°* — Z" given by matrix multiplication by A.

3.5. Projective Toric Ideals. Let A = {my,...,ms} C Z" be as above. Besides the affine toric
variety V4 C C®, we also get a projective toric variety Y4 C P°! by regarding (3.7) as a map
(C*)™ — Ps—1. More precisely, Y4 is defined to be the Zariski closure of the image of this map.

The ideal of Y4 consists of all homogeneous binomials yo‘+ —y® as in (3.6). One nice case is
when the n x s matrix A built from A contains the vector (1,...,1) in its row space. When this
happens, the binomials ya+ —y® of (3.6) are automatically homogeneous, so that the toric ideal
14 is the homogeneous ideal of Y4.

Example 3.14. As in Example 3.10, let A = {m1 = e1,ms = e3,m3 = e3,m4 = €1 +ea—e3} C Z3.
This gives the matrix

1 00 1
A=|1010 1
0 01 -1
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The sum of the rows is (1,1,1,1), so that the toric ideal is homogeneous. This is consistent with
I4 = {zy — zw) C C[z,y, 2, w], which is the homogeneous ideal of the surface zy = zw in P2. O

One way to arrange for A to contain (1,...,1) in its row space is to replace A with
AT ={(1,my),...,(1,ms)} Cc Z".

This gives the matrix AT obtained from A by adding a row of 1’s at the top. Then one can
easily show the affine cone of Y4 C P*~! is the variety V4+ C C°. Hence the toric ideal I 4+ is
homogeneous and defines the projective variety Y4.

Here is one interesting situation in which the projective toric variety Y4 arises naturally.

Example 3.15. Suppose that A = {my,...,ms} C Z" and that A generates Z". Then let L(.A)
be the set of Laurent polynomials with exponent vectors in A, i.e.,

L(A) = {at™ + -+ + a;t™ | a; € C}.
Given n + 1 Laurent polynomials fo,..., f, € L(A), their A-resultant
Resa(fo,---, fn)

is a polynomial in the coefficients of the f; whose vanishing is necessary and sufficient for the
equations fo = --- = f, = 0 to “have a solution” (see [18, Prop. 2.1]). However, one must be
careful where the solution lies. The f; are defined initially on the torus (C*)", but the definition of
Y 4 shows that the equation f; = 0 makes sense on Y4. Then one can prove that

Res(fo,...,fn) =0 <= f1 =-+- = f, =0 have a solution in Yj4.

The relation between toric varieties and resultants is described in [10, 18].

Basic references for toric ideals and non-normal toric varieties are [18, 34]. Also, some applica-
tions to combinatorics can be found in [34, Ch. 14].

3.6. Lattice Ideals. We conclude this lecture by pointing out that toric ideals can be generalized
as follows. Let L C Z° be a subgroup, which we call a lattice since it is free Abelian. Then the
lattice ideal of L is defined by

IL:<ya—yb|a,beNS,a—beL> CClyiy---,ys)

Example 3.16. Let L = ker A, where the n X s matrix A comes from A C Z". Thena — b € L if
and only if Aa = Ab. By (3.8), it follows that I, is the toric ideal I 4. O

We showed in Section 3.4 that toric ideals are always prime. By Theorem 7.4 of [25], a lattice
ideal is toric if and only if it is prime.
Here is an example (taken from [25]) of a lattice ideal that is not prime and hence not toric.

Example 3.17. Let L = {(a,b,c) € Z3| a + b+ ¢ = 0 mod 2}. Then one can compute that
I = (z? — 1,2y — 1,yz — 1).
Since V(I1) = {£(1,1,1)}, it is clear that I, is not prime. In fact,
In=(z—-1ly—1l,z—L)Nn{z+1,y+1,z+1).
This intersection of maximal ideals is the primary decomposition of I7,. O

Much more material on lattice ideals can be found in [25].
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LECTURE 4. POLYTOPES AND TORIC VARIETIES

This lecture will explore the deep relation between toric varieties and poltytopes.

4.1. Lattice Polytopes. Let N ~ Z" be a lattice with dual M. A lattice polytope P C Mg ~ R"
is the convex hull of a finite subset of M. In this lecture, we will always assume that P has
dimension n.

The definition of a face of a polytope P is similar to the definition of face of a cone—we leave
the definition to the reader. A facet is a face of codimension 1 and a vertez is a face of dimension
0. Note that the vertices of a lattice polytope lie in the lattice M. Our assumption that dim P = n
implies that the normal vector to a facet F' of P is unique up to multiplication by a nonzero real
number. Since the facet is defined over M, we can pick a unique facet normal np € N by requiring
that ng be primitive and point toward the interior of P .

Every lattice polytope has two representations, one as a convex hull as above, and the other as
an intersection of closed halfspaces. Each facet F' of P has a supporting hyperplane defined by

<m7 nF) = —ar

for some ap € Z. Then the polytope is given by
P= ﬂ {m € Mg | (m,np) > —ap}. (4.1)

F is a facet

4.2. Normal Fans. Given P as above and a face F of P (not necessarily a facet), let o be the
cone in Np generated by the facet normals ny for all facets F' containing F. It is easy to see that
or is a strongly convex rational polyhedral cone in N and that the set of cones

Yp ={or | F is a face of P}
is a fan, called the normal fan of P. This gives a toric variety denoted Xp.
Example 4.1. The unit square O with vertices (0,0),(1,0),(1,1), (0,1) can be represented
O={a>0}n{b>0}N{-a>-1}n{-b> -1}

It follows that the inward normals are +e; and ey in Z2. These can be pictured as follows (not

drawn to scale):
(0,1) l l (1,1)

(0,0) T T (1,0)
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Each inward normal appears twice to show that each vertex gives a 2-dimensional cone in the
normal fan. For example, the vertex (1,1) gives the 2-dimensional cone

-

The other vertices are handled similarly, and the resulting normal fan is the one appearing in on
the right in Example 2.2 of LECTURE 2. Hence Xp = Pl x PL O

Exercise 4.1. Show that the normal fan of the lattice polygon P = Conv(0,2e1,e2) C R? is the
fan pictured in Example 2.4 of LECTURE 2. Hence Xp =P(1,1,2). O

In general, we can characterize normal fans as follows.

Theorem 4.1. The normal toric variety of a fan 3 in Ng ~ R™ is projective if and only if ¥ is
the normal fan of an n-dimensional lattice polytope in Mp.

A useful observation is that the polytope P is combinatorially dual to its normal fan ¥Xp. This
means that there is a one-to-one inclusion reversing correspondence

ocr€EXp+—FCP
between cones of Yp and faces of P (provided we count P as a face of itself) such that
dimor +dim F =n (4.2)

for all faces F of P. Combining this with the correspondence between cones in ¥ p and torus orbits
in Xp from Section 2.3 from LECTURE 2, we get a one-to-one dimension preserving correspondence
between faces of P and torus orbits of Xp. Thus:

e Vertices of P <— n-dimensional cones of ¥ p <— fixed points of the torus action in Xp.
e Facets of P <— rays of 3Xp <— torus-invariant irreducible divisors in Xp.

In general, P determines the combinatorics of the toric variety Xp.
There is also a dual construction of Xp when P contains the origin as an interior point. In this
situation, the polar or dual of P C My is defined by

P° ={u € Ng | (m,u) > —1 for all m € P}.

One can show that P° is an n-dimensional polytope containing the origin in its interior. The
vertices of P° lie in Mg = M ®z Q, though P° need not be a lattice polytope.

Example 4.2. The lattice polytope P = Conv(42e; £ 2e3) C R? contains the origin. Its polar P°
is a tilted square in the plane:

N[

N[ =
NI

D=

Note that P° is not a lattice polytope. O
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Given P C Mg and P° C Ng as above, one can show that the normal fan ¥p in Nk by taking
cones (relative to the origin) over the faces of P.

Example 4.3. The fan obtained by taking cones over faces of the polytope P° C R? of Example 4.2
is clearly the fan on the right in Example 2.2 from LECTURE 2 that gives P! x P'. O

4.3. Ample Divisors and Monomial Maps. Let P C Mr ~ R” be an n-dimensional lattice
polytope. The facet normals of P determine the normal fan ¥ p that gives the toric variety Xp.
But P contains more data than just its facet normals np, for the representation (4.1) also includes
the integers ar appearing in the defining equations

<m7 ’ﬂF) = —ar

of the supporting hyperplanes of the facets. Each facet F' corresponds to a torus-invariant divior
Dr on Xp, so that P determines the divisor

Dp = Z arDp,
F

where the sum is over all facets of P.

Example 4.4. Given positive integers r and s, let P, C R? be the r x s rectangle with vertices
(0,0), (r,0),(0,s), (r,s). In terms of (4.1),

Ps={a>0}Nn{b>0}N{-a>—-r}n{-b>—s}.

This has facet normals n, = e;,n9 = ey, n3 = —ey,nq4 = —ey. The normal fan is the same as
for Example 4.1, so that Xp, , = P! x P'. If Dy, Dy, D3, Dy are the divisors corresponding to
n1, M9, N3, Ng, then

DPr,s = ’I"D3 + 3D4

since a1 = ag =0,a3 =7,a4 = s. O
In general, the divisor Dp has some important properties. We begin with an easy one.
Proposition 4.2. Dp is a Cartier divisor on Xp.

Proof. Let m be a vertex of P and o be the corresponding n-dimensional cone of ¥p. This gives
the affine open subset V, C X5. We leave it as an exercise to check that for a facet F' of P,

DrNV, #0 <= F contains m.

Using the character x™ is a rational function on Xp, we obtain

diV(Xm)|V(r = Z (m,np)Dp = — Z apDp = —Dply,,

meFr meF
where the first equality is by (3.1) from LECTURE 3, the second follows since (m,nr) = —ar for
all facets containing m, and the third follows from the definition of D. This shows that D is locally
principal and hence Cartier (see Section 0.16 from the BACKGROUND). O

A deeper property of Dp is that it is ample. We can explain this as follows. Define
H(Xp,O0x,(Dp)) = {f € C(Xp)" | div(f) + Dp > 0}. (4.3)

Here, Ox,(Dp) is the invertible sheaf associated to the Cartier divisor Dp. We won’t discuss
sheaves in these lectures—see [15, 21] for an introduction to sheaf theory. Recall from Section 0.15
in the BACKGROUND that div(f)+ Dp > 0 means that the divisor is effective, i.e., is a nonnegative
linear combination of irreducible divisors.

The remarkable fact is that the rational functions f appearing in (4.3) are determined by the
lattice points of P.
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Proposition 4.3. H(Xp,Ox,(Dp)) = @,,cpam € X™

Proof. Since Dp is torus-invariant, the torus of Xp acts on H*(Xp, Ox, (Dp)). It follows (see [17,
Sec. 3.3] for details) that this space spanned by characters. Using (3.1) from LECTURE 3, we see
that div(x™) + Dp > 0 if and only if

Z(m,nF)DF + ZGFDF > 0.
F F

This is equivalent to (m,np) > —ap for all F', which by (4.1) means that m € PN M. O

Divisors are used in algebraic geometry to give maps to projective space. For Dp, one uses the
rational functions in H%(Xp,Ox,(Dp)), which by Proposition 4.3 means the characters coming
from lattice points of P. To write this concretely, assume that N = M = Z", so that a lattice point
m € P NZ" gives the character Y™ = t™ on the torus (C*)" of Xp. Let my,..., my be the lattice
points of P. Then we get the map

Oty ty) = (™, ..., t™) e P L= |PNZ", (4.4)

from (C*)™ to P!, This is a special case of (3.7) from LECTURE 3 and gives the projective toric
variety Ypnz» defined in Section 3.5 of LECTURE 3.

The toric varieties Xp and Ypnzn are closely related. To understand this, we first note that if v
is a positive integer, then P and v P have the same normal fan and toric variety. Thus Xp = X, p.
Furthermore, it is easy to see that the divisor associated to vP is D,p = vDp.

Then H*(Xp,Ox, (vDp)) gives the map

@, (CY" — P71 ¢, =|(vP)NZ",
defined by the lattice points of vP. For v > 0, one can prove that ¢, induces an isomorphism
Xp ~ Yr(uP)ﬂZn- (45)

In other words, H°(Xp,Ox,(vDp)) gives a projective embedding of Xp for v > 0. This is what
it means to say that the divisor Dp is ample. One consequence of (4.5) is that Xp is a projective
variety, as claimed in Theorem 4.1.

Finally, we note that while (4.4) does not give a projective embedding of Xp in general, it is
known to give an embedding in the following two cases:

e Xp is smooth, or

e we replace P with (n — 1)P, n = dim P.
It follows that when P is a polygon, we have (n —1)P = (2—1)P = P. Thus (4.4) always gives an
embedding when Xp is a toric surface. More generally, the second bullet shows that the above v > 0
becomes v > n — 1, so that (4.5) is an isomorphism for » > n — 1. This gives an elementary way
to construct the toric variety Xp: given P, take the projective toric variety Y(, p)ny parametrized
by the Laurent monomials coming from the lattice points of v P, where v is any integer > n — 1.

Even though (4.4) need not give an embedding of X p, it always extends to an everywhere defined

map Xp — Ypaa C P! (we will prove this below). Furthermore, the map Xp — Ypnaas has the
following explicit description. Let M C M be the sublattice generated by the differences m — m/
for all m,m’ € P NZ". Dualizing, we get a lattice N D N. Then Xp — Ypnys factors

Xp = XEP,N — XEP,]V — Ypnmr (4.6)

where the first map is the quotient of Xp by the finite group N /N (by Section 2.7 of LECTURE 2)
and the second map is the normalization map (by the discussion following Theorem 13.12 of [34]).
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Example 4.5. Let P = Conv(0, e1, ep, —e1 +e3+2e3) C Mg = R?, where M = Z3. Then M equals
Z.e1 + Zeog + 2Ze3, so that M has index 2 in M. Hence N = Zey + Zes + %Zeg, so that N = Z3 is

a sublattice of index 2 in N. By (4.6), Xp is a 2-to-1 cover of the normalization of Ypnu.
For completeness, let’s determine the toric varieties Xp, sz, ~» and Ypnpy. The latter is easy,
since one computes without difficulty that P N M consists of the vertices of P. It follows that

Ypau = P3. As for the other two, the facet normals of P relative to N are
n1 =es, No = 2e; +e3, ng = 2e3 —e3, ng = —2e; — 2e2 — e3.

These were computed using the program polymake, which can be downloaded from the internet
(google “polymake”). Note that ny + no + ng + ng = 0.

If we switch to N, the normals are 7i; = %ni, and it easy easy to see that they generate N.
Since they sum to 0, we see that XEP, N= P3. This of course is consistent with Ypnyr = P? since
XEP,JV — Ypnys is the normalization map.

Finally, the original facet normals n; generate the sublattice N' = 2Ze; + 2Zey + Zez C N.
Relative to N', we clearly have Xy, yv = P3, so that by Section 2.7 of LECTURE 2, Xp is the

quotient of P? by N/N' ~ 7 /27 & 7./ 2Z. O

4.4. Homogeneous Coordinates. For the toric variety Xp, the homogeneous coordinate ring
defined in LECTURE 3 has a nice description as follows. By (4.2), 1-dimensional cones of the
normal fan correspond to facets of P. It follows that variables correspond to facets. We label

the facets as Fi,...,F, and the facet normals as ni,...,n,. Accordingly, the variables in the
homogeneous coordinate ring will be labeled as x1,...,z,. These are the facet variables of the
polytope P.

The irrelevant ideal B = (z° | 0 € ¥p) C Clz1,...,,] defined in Section 3.2 from LECTURE 3

also has a nice description. First observe that B is generated by the monomials 2% coming from
n-dimension cones in the normal fan, which correspond to vertices P. It follows easily that if o
corresponds to the vertex m € P, then z7 is the product of those variables whose facets miss the
vertex v. So the generators of B can be determined directly from the polytope.

The lattice points of P give some interesting monomials in the homogeneous coordinate ring
Clz1,-..,z,]). Write (4.1) as

P= ﬂ{m € Mg | (m,n;) > —a;}. (4.7)

2

Then, given m € PN M, set

T
./L'[m] — H $§m7ni>+ai.
i=1

We call z™ a P-monomial. The description (4.7) of P shows that the exponents of z[™ are all
> 0, so that 2™ is in the homogeneous coordinate ring.

One nice observation is that the exponent of z; in zI™ gives the lattice distance from m to
the facet F;. To see this, suppose that the exponent of z; is a > 0. The facet F; lies in the
hyperplane {m € R" | (m,n;) + a; = 0}. To get from here to m, we must pass through the a
parallel hyperplanes, namely {m € R" | (m,n;) + a; = j} for j = 1,...,a. Here is an example.

Example 4.6. Consider the toric variety Xp of the polytope P C R?, with facet variables as
indicated:



38 DAVID A. COX

5

1 Z4

Zz3

Note that P has vertices (1,1),(—1,1),(—1,0),(0,—1),(1,—1). In terms of (4.7), we have a; =
.-+ = a5 = 1, where the indices correspond to z1,...,z5. The 8 points of P N Z? give the following
P-monomials:

2.2 2.2 2.3 .2

2 2.2
T3T L5, T1T2X3T4T5, T{THT3T5
2 2 2
.’L‘]_.TAL.TS, $1$2.’L'5.

In this display, the position of each P-monomial ™ corresponds to the position of the lattice point
m € PNZ2 O

Recall that the degree of a monomial []7_, z;" is the class of the divisor ) ;_; &;D; in the Chow
group A,_1(Xp) (see (3.2) from LECTURE 3). A nice property of P-monomials is that they all
have the same degree. To see this, let G = Homy(A,—1(Xp),C*). For p = (u1,...,ur) € G, we set

ut =1 u
g

Then, given m € P N Z", we have

r

-l = H(uiwi)(m,m)ﬂi = puP g™l (4.8)
i=1
since []7_; uz(m’ni) = 1 by the description of G given in Section 3.3 of LECTURE 3. It follows that

all P-monomials transform the same way under G, which means that they have the same degree.
Furthermore, one can show the P-monomials give all monomials of this degree. Comparing this to
Proposition 4.3, we see that the graded piece of C[z1,...,z,] in this degree is naturally isomorphic
to HO(XP, OXp (Dp))

Here are two exercises that explore other aspects of P-monomials.

Exercise 4.2. Prove that the lattice points in the interior int(P) of P correspond precisely to
those P-monomials which are divisible by z - - - z,.

Exercise 4.3. A P-monomial corresponding to a vertex of P is called a wertex monomial and let
B' = (zI™ | m is a vertex of P) be the monomial ideal generated by the vertex monomials. Prove
that v/B' = B, where B is the irrelevant ideal defined above. This shows that V(B) C P" is the
subvariety defined by the vanishing of the vertex monomials.

We can also use P-monomials to give a homogeneous version of the map (4.4) which uses the
quotient representation Xp = (C" \ V(B))/G. As in Section 4.3, let m;,i = 1,...,£¢ be the lattice
points of P N Z™. Then consider the map

(21, ..., 3r) — (am™l . glmd), (4.9)
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First observe that if m; is a vertex of P, then zl™il is a vertex monomial. Since V(B) is defined
by the vanishing of these monomials (Exercise 4.3), it follows that (4.9) gives a well-defined map
¢:C"\V(B) — P L.

Furthermore, given z € C" \ V(B) and p € G, (4.8) implies that

¢(p - @) = p” $(x).
Since we are mapping to projective space, ¢ induces a well-defined map
Xp=(C"\V(B)/G — P (4.10)
The surprise is that if one restricts this map to (C*)™ C Xp, then one gets ezactly the map (4.4)
Oty ... tp) = (™, .. t™) e P

defined by the Laurent monomials of lattice points of P N Z". To prove this, observe that if a* is
the map (C*)" — (C*)" from (3.4) induced by « from (3.2), then

A
m,n;
tmoa*:sz( i)
i=1

for m € Z". Then one computes that

T n T T
; myn; m,n;)+a;
w‘fl---xf’tmoa*:HJU?’HHaUZ( ”):H:vz<- miytai _ glm]
=1

j=li=1 i=1
When restricted to a point in (C*)", it follows that as we vary m € P N Z", the functions ™ o o*
and z[™ differ by a multiplicative factor which doesn’t depend on m. Hence (4.10) and the map
¢ from (4.4) give the same map on (C*)". In particular, this proves the claim made earlier that ¢
extends to all of Xp.

4.5. The Dehn-Sommerville Equations. Euler’s formula for a 3-dimensional polytope Q C R?
states that

fo—fit+fa=2, (4.11)

where f; is the number of i-dimensional faces of Q). If () has the additional property that all of its
facets are triangles (such as a tetrahedron, octahedron or icosahedron), then counting edges gives

3f2 =2fr. (4.12)

To generalize these, suppose that ) is an n-dimensional polytope in R" such that every facet
is simplicial, meaning that every facet has exactly n vertices. For such a polytope, let f; be the
number of i-dimensional faces of @, and let f_; = 1. Then, for 0 < p < n, set

n .
h? = Z(_l)z_p (;) Jn—i-1-
i=p
The Dehn-Sommerville equations assert that if ) C R™ is an n-dimensional simplicial polytope,
then
hP =h""P forall0 <p<n. (4.13)
When n = 3, (4.11) is h® = h3 and (4.12) is equivalent to h! = h? (assuming h® = h?).

To prove (4.13), note that we can move @ so that the origin is an interior point. Furthermore,
wiggling the vertices by a small amount does not change the combinatorial type of (). Thus we
may assume that its vertices lie in *. The polar QQ° also has vertices in Q", so that P = vQ°
is a lattice polytope for suitably chosen v € Z. Then, as in Section 4.2, the normal fan of P is
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obtained by projecting from origin to the faces of (). This fan is simplicial since @ is, so that Xp
is a simplicial projective toric variety.

Being projective and simplicial implies two nice facts about Xp:

e h? =dim H?(Xp,Q) for 0 < p < n.

e Poincaré Duality holds for Xp, i.e., dim H?(Xp,Q) = dim H?"9(Xp,Q) for 0 < ¢ < 2n.
The Dehn-Sommerville equations (4.13) follow immediately! In the smooth case, the second bullet
is Poincaré Duality. The simplicial case is similar since a quasismooth variety is a rational homology
manifold.

This is very pretty but is not the end of the story. One can also ask if it is possible to characterize
all possible vectors (fo, f1,- .-, fn—1) coming from n-dimensional simplicial polytopes. For example,
when n = 3, one can show that a vector of positive integers (fo, f1, fo) comes from a 3-dimensional
simplicial polytope if and only if fy > 4 and (4.11) and (4.12) are satisfied. This can be generalized
to arbitrary dimensions, though the result takes some work to state. A nice account can be found
in Section 5.6 of [17]. What’s interesting is that the proof uses the Hard Lefschetz Theorem for
simplicial toric varieties (which is a very difficult theorem).

4.6. The Ehrhart Polynomial. In our discussion of the toric variety of a lattice polytope P, we
encountered lattice points in positive integer multiples of P (to get a projective embedding) and
in the interior of P (Exercise 4.2). The following wonderful result of Ehrhart describes the number
lattice points in positive integer multiples of a lattice polytope and its interior.

Theorem 4.4. Let P be an n-dimensional lattice polytope in Mg = R"™. Then there is a unique
polynomial Ep (the Ehrhart polynomial) with coefficients in Q which has the following properties:

(1) For all integers v > 0,
Ep(v) = |(vP)N M|

(2) If the volume is normalized so that the unit n-cube determined by a basis of M has volume
1, then the leading coefficient of Ep is vol(P).
(3) If int(P) is the interior of P, then the reciprocity law states that for all integers v > 0,

Ep(-v) = (=1)" |(vint(P)) N M|.

Before discussing the proof, we will give a classic application in dimension 2. If P is a lattice
polygon, then the Ehrhart polynomial is

Ep(z) = area(P) s> + Bz + 1 (4.14)
since Ep(0) = |(0- P) N M| = 1. If we let OP denote the boundary of P, then
Ep(l) =|PNM|=|int(P)NM|+|0PNM| = Ep(-1)+ |0P N M|,
where the last equality uses the reciprocity law. By (4.14), we also have
Ep(l) = area(P)+ B+1 and Ep(—1)=area(P)— B+ 1.

Combining these equalities gives the following:
e B = $|0P N M|, so that the Ehrhart polynomial of a lattice polygon is

Ep(z) = area(P) z? + SloPN M|z +1.
e In particular, setting x = 1 gives Pick’s Formula

|PN M| = area(P) + 2|0P N M| + 1.
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While Theorem 4.4 can be proved by elementary means, my favorite proof uses the cohomology
of line bundles on the toric variety Xp. The full details go beyond the scope of these lectures (see
[12] for a complete proof), so we will just present the highlights of the proof.

Recall from Section 4.3 that Xp has the ample divisor Dp = ) apDp and that for any positive
integer v, we have Xp = X, p and D,p = vDp. Furthermore, applying Proposition 4.3 to vP gives

dim H*(Xp, Ox, (vDp)) = |(vP) N M|.

We define the Euler-Poincaré characteristic of Ox,(vDp) to be

n

X(Xp, Ox, (vDp)) = S (1) dim H'(Xp, Ox, (vDp)).
i=0

The Riemann-Roch theorem implies that there is a polynomial h(z) € Q[z] of degree at most n
such that

x(Xp,Ox, (vDp)) = h(v) (4.15)
for all integers v.

The divisors vDp are ample for v > 0, so that
H'(Xp,0x,(vDp)) =0, i>0,

by the Demazure vanishing theorem, and the same vanishing holds when v = (. Using this, the
Euler-Poincaré characteristic simplifies to

X(Xp,Ox, (vDp)) = dim H*(Xp, Ox, (vDp)) = |(vP) N M]|.
Combining this with (4.15), we conclude that the polynomial h satisfies
|(vP)N M| = h(v) (4.16)

for all v > 0. If we set Ep(z) = h(z), then the first assertion of Theorem 4.4 follows.
The second assertion follows easily from the first, for if Ep(z) = apz™ + - - - + ag, then

an = lim 220 _ gy @RI O M

v—oo P V—00 yn

= vol(P).
The proof of the third assertion is more sophisticated. The dualizing sheaf of Xp is given by
wxp = Oxp (=2 pDr).
Since Xp is Cohen-Macaulay, Serre duality implies that
HY(Xp,Ox,(—vDp)) ~ H" *(Xp,0x, (vDp) @ wx,)*.
In terms of the Kuler-Poincaré characteristic, this easily implies
x(Xp,Ox,(—vDp)) = (-1)" x(Xp, Ox, (vDp) @ wx,)
for all v. If we combine this with (4.15), we see that the Ehrhart polynomial Ep = h satisfies
Ep(-v) = (-1)"x(Xp, Ox,(vDp) @ wx,)
for all v. But vDp is ample when v > 0, so that by the Kodaira vanishing theorem,
HYXp,O0x,(vDp) ®wx,) =0, v >0.
Hence, for these v, the above formula simplifies to
Ep(—v) = (=1)" dim H*(Xp,Ox,(vDp) @ wx,)-
The final step in the proof is to show that
dim H°(Xp, Ox, (vDp) ® wx,) = |(vint(P) N M|
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when v > 0. By replacing P with v P, it suffices to prove this for v = 1. Note that
Ox,(Dp) ® wx, = Ox, (Dp — X pDr) = Ox, (L plar —1)Dr),
where P = (\p{m € Mg | (m,nr) > —ar}. Since

int(P)NM =({m € M | (m,np) > —ap} =({m € M| (m,np) > —(ar — 1)},

F F
the methods used to prove Proposition 4.3 imply that
HY(Xp,0x,(Xplar — 1)DF)) = @ C-x™.
meint(P)NM

This completes the proof of the theorem!

We conclude with another application of the Ehrhart polynomial. Let A = {m4,...,ms} C Z"
and assume that (1,...,1) is in the row space of the n x s matrix A whose columns are A. In this
situation, we showed in Section 3.4 of LECTURE 3 that the toric ideal I 4 is homogeneous and hence
defines the (possibly non-normal) projective toric variety Y4 C P*~!. We now give a criterion for
Y4 to be normal which involves the Ehrhart polynomial of the polytope P = Conv(.A).

To state the criterion, we define the Hilbert polynomial of Y4 to be the unique polynomial H 4
for which

Hu(v) = #{mi, +---+mi, | mij,,...,m;, € A}
for v > 0. One can show that the polynomials H 4 and Ep have the same leading term, which is
the normalized volume of P. Then we have the following result of Sturmfels [34, Theorem 13.11].

Theorem 4.5. The toric variety Y4 C P& 1 is normal if and only if the Hilbert polynomial H 4
equals the Ehrhart polynomial Ep.
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LECTURE 5. TORIC REGULARITY

This lecture will discuss some of the commutative algebra related to toric varieties. We will focus
mostly but not exclusively on the concept of reqularity. Our treatement of regularity will assume
familiarity with local cohomology. The commutative algebra we need can be found in [13].

5.1. Regularity. We begin by reviewing regularity in the classical case. Let R = Clxzo,...,z,],
where deg(z;) = 1 for all ¢, and let B = (xg,...,x,) be the irrelevant ideal. Note that R is the
homogeneous coordinate ring of the toric variety P™.

There are several ways to define regularity; we will use the definition given in terms of local
cohomology because it generalizes best to the toric context. Given a finitely generated graded
R-module M, its local cohomology group H% (M) is also a graded R-module. The graded piece in
degree m will be denoted H% (M ),.

Definition 5.1. A finitely generated graded R-module M is m-regular if
Hy(M)y = {0} for all £4 i > m + 1.
The regularity of M, denoted reg(M), is the least m for which M is m-regular.

One can also compute reg(M) from a minimal graded free resolution of M. More precisely, given
such a resolution, say

0 —F —--—F —F—M—0, (5.1)
write F; = @, R(—a;;). In [14] it is shown that

reg(M) = rrzggx{aij — i} (5.2)

Example 5.1. Suppose that R = C[z,y, 2] and M = R/{z,y3,23). We get the minimal resolution
0 — R(-7) — R(-4)?® R(-6) — R(-1)®R(-3> R —M —0

(this follows because x, 43, 22 form a regular sequence, so that the free resolution of the ideal they
generate is given by the Koszul complex.) Thus

reg(M) =max{0-0,1-1,3-1,4-2,6-2,7—-3} =4.

In Macaulay 2, the betti command gives the following output for the above resolution of M:

total: 1 331
11 .

0
1: . . ..
2: .2 2.
3: . ...
4: . .11
In this diagram, an entry b;; in column i and row j indicates that F; has R(—i — j)% as a direct
summand, where the rows and columns are numbered starting at 0. Thus the first 2 in the middle

of the diagram is in column 1 and row 2, meaning that R(—1 — 2)? = R(—3)? appears in F;. The
second 2 is in column 2 and row 2, so that R(—2 — 2)2 = R(—4)? appears in Fb. a
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In general, the number before the colon on the bottom row of a betti diagram (4 in the above
case) is the regularity of M. Be sure you understand this. It follows that the regularity gives a
good measure of the computational complexity of M.

Regularity can also be formulated in terms of Ext, as is done in [13]. Local duality provides the
link between this definition and the one given above in terms of local cohomology.

Here is one case where regularity is easy to understand.

Example 5.2. Let I C R be a homogeneous ideal such that V(I) C P" is empty. Then the graded
quotient R/I is a finite dimensional vector space over C. In this situation, one can show that

. H%(R/I) = R/I.

e Hy(R/I) = {0} for i > 0.
It follows that reg(R/I) = d, where d is the largest integer such that (R/I)g # 0, i.e., Iy # Ry.
Thus reg(R/I) is the smallest integer d such that I, = R, for all £ > d. O

Given a finitely generated graded R-module M, its Hilbert function Hps is defined by Has(d) =
dim M. A basic result of commutative algebra states that Hys(d) is a polynomial for d > 0. This
is the Hilbert polynomial Pps. The regularity of M tells us how large d needs to be in order for
these to agree. The precise result is that

Hy(d) = Py (d)

for all d > reg(M) + r — n, where r is from the minimal free resolution (5.1) and n is from
R =[xy, ...,zy]. This is proved in [14, Thm. 4.2].

The general intuition is that the regularity captures the computational complexity of a graded
R-module. The state-of-the-art for computing regularity is discussed in [2]. See also [28] for another
introduction to regularity.

5.2. Generic Initial Ideals. A homogeneous ideal I C R has an initial ideal in(I) with respect
to graded reverse lexicographic order. However, if we make a generic change of coodinates and
then take the initial ideal, we get the generic initial ideal Gin(I). See [13, 15.9] for a discussion of
generic initial ideals.

A key result of Bayer and Stillman is that

reg(R/I) = reg(R/Gin([)). (5.3)

Furthermore, the regularity of I is the highest degree of a minimal generator of Gin(I).

A monomial ideal J C R is strongly stable if z;m € J implies z;m € I for any 1 < j < 4. One
can prove that generic initial ideals are strongly stable. There is also the related concept of Borel
fized ideal, which we won’t discuss here (see [13]).

5.3. Weighted Regularity. We next discuss regularity in the case of a weighted polynomial ring
R = Clxy,...,z,], where deg(x;) = g; for posiive integers qo, ..., g, satisfying ged(qo, ... ,qn) = 1.
We will also assume that gy < --- < g,,. The irrelevant ideal B = (zy, ..., z,) is the same as before.
Here, R is the homogeneous coordinate ring of the toric variety P(qo,- .., qn)-

The recent preprint [11] studies regularity in this weighted situation. Given a finitely generated
graded R-module M, we define its weighted regularity reg(M) exactly as in Definition 5.1.

Although the definition looks the same, weighted regularity differs from the ordinary notion in
several ways. For example, given a minimal graded free resolution (5.1) with F; = €, R(—aij),
[11] proves that

reg(M) = H;%X{aij — i} = Y p—olax — 1) (5.4)
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Comparing this to (5.2), we see that we need to take the weights of the variables into account when
thinking about regularity in terms of a minimal resolution. Note also that (5.4) reduces to (5.2)
when the weights are all 1.

5.4. Weighted Generic Initial Ideals. The paper [11] explains how to define the generic initial
ideal Gin(I) of a weighted homogeneous ideal I C R with respect to weighted reverse lexicographic
order. However, one needs to make some assumptions on the weights in order for this to be useful.
If gi|giy1 for i = 0,...,n — 1, then (5.3) continues to hold for weighted regularity.

One way to understand this is to observe that coordinate changes used in the original definition of
Gin([) involve the automorphism group of P". In the weighted case, P(qo, - . -, ¢,) may have a much
smaller automorphism group. For example, when the weights are gqg =n+ 2,90 =n+3,...,¢q, =
2(n + 1), the corresponding automorphism group is as small as possible, namely (C*)". On the
other hand, the divisibility condition g¢;|g;+1 guarantees a rich supply of automorphisms, hence a
better theory of generic initial ideals.

Another way to see the impact of the weights is to consider strongly stable ideals in the weighted
case. Here, a monomial ideal J C R is strongly stable if x;m € J implies that um € J for any
monomial u € Clz1,...,z; 1] of degree ¢;. One can show that in the weighted case, generic initial
ideals are strongly stable. However, this might not say much. For instance, Example 1.6 of [11]
shows that every monomial ideal is strongly stable for the weights gg = n 42,0 =n+3,...,q, =
2(n + 1) mentioned above.

5.5. Divisors on a Toric Variety. We have now defined regularity for the homogeneous coordi-
nate rings of P" and P(qo, ..., qy). Before we can extend the definition to the coordinate ring of an
arbitrary projective toric variety, we need to say more about divisors on toric varieties.

Let X = Xy, be a projective toric variety with quotient representation X = (C*M) \ V(B))/G as
explained in LECTURE 3. This has the homogeneous coordinate ring S = Clz, | p € £(1)], which
is graded by the Chow group A,,_1(X) via the exact sequence (3.2) from LECTURE 3.

Given a Cartier torus-invariant divisor D = 3~ a,D,, we follow (4.3) from LECTURE 4 and set

H(Xp,Ox, (D)) = {f € C(Xp)* | div(f) + D > 0}.

This vector space is spanned by the characters x™ satisfying div(x™) + D > 0. Then we say that
D is generated by global sections if these characters give an everywhere defined map from X to
projective space as described in LECTURE 4. Furthermore, D is ample if this map is an embedding
for some positive integer multiple of D.

Then define

K ={[D] € A,—1(X) | D is Cartier and generated by global sections}

and its saturation
K% = {[D] € A,,_1(X) | uD € K for some u > 0}.
One can show that K and K52 are finitely generated subsemigroups of the finitely generated Abelian
group A,_1(X). Also, K = K% whenever X is smooth.
Here are some examples.

Example 5.3. Both P" and P(qo, - .., g,) have Z as their Chow group. For P, we have K = K53 =
N, while for P(qg, ..., qn), we have K% = N and K = lem(qp, . .., g,)N. The latter reflects the fact
that a Weil divisor on P(qy, .. ., qy) is Cartier if and only if its class in the Chow group is a multiple
of all of the weights. O

Example 5.4. For P! x P!, Example 3.1 from LECTURE 3 shows that the Chow group is Z2. Here,
one can prove that K = %% = N2, O
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There is a lot more to say about divisors on toric varieties. The interested reader should consult
[17, Ch. 3] and [26, Ch. 2].

5.6. Toric Regularity. Let X be a projective toric variety with homogeneous coordinate ring S
graded by A,_1(X) and irrelevant ideal B C S. In [24], Maclagan and Smith define the regularity
of a finitely generated S-module M. Their definition involves picking a finite set C C A,—1(X).
For simplicity, we will assume that C consists of the minimal generators of X' C A,, 1(X). This
implies that NC = K53t

Definition 5.2. Let M be a graded S-module and fix C = {¢1,...,c¢]} as above. Given m €
An—1(X), we say that M is m-regular if

Hy(M), = {0}
for all of the following p:
(1) i > 0 and p is of the form p = m — A\je; — -+ — M\eg + u, where Aq,..., N € N satisfy

MA+--+XN=i—1andu € K53,
(2) i =0 and p is of the form p = m + ¢; + u, where 1 < j < /£ and u € K%,

Here is an example.

Example 5.5. For X = P", we have 4, 1(X) = Z, K =N, and C = {c;} = {1}. Thus M is
m-regular provided Hy (M), ={0} forp=m — (i — 1) +uforu €N, ie, p+i>m+ 1. Thisis
exactly the condition appearing in Definition 5.1. The same is true in the weighted case. O

To understand Definition 5.2, the key point is that we need more and more of the local coho-
mology group H};(M ) to vanish as 7 increases. In the classical case considered in Example 5.5,
the vanishing condition becomes p > m + 1 — i, i.e., each time you increase ¢ by one, you need
decrease the lower bound by 1. But in the general case, this lower bound lies in A4, _1(X), so that
the “decrease” occurs relative to K% = NC. This is why the 1 — i = —(i — 1) for P" turns into
—Aier — o — Mgy, A1+ -+ Ap =1 — 1, for the toric variety X.

Definition 5.3. Given a graded S-module as above, we define reg(M) C A,,_1(X) to be the set
reg(M) = {m € Ap_1(X) | m is m-regular}.

Note that this is a set, not a single element. For toric varieties like P" or P(qo,. .., q,) that have
Z as their Chow group, one can take the minimal element of reg(M ), which is just the regularity
defined earlier.

Here are some examples when M = S.

Example 5.6. In Example 3.3 of LECTURE 3, we saw that the homogeneous coordinate ring of
P! x P! is Clz1, 2o, T3,24], where deg(z1) = deg(z2) = (1,0) and deg(z3) = deg(z4) = (0,1). To
simplify notation, we will write this ring as S = C|z, y; z, w|, where the semicolon reminds us that
z,y have degree (1,0) and z,w have degree (0,1). Recall from Example 5.4 that K% = N2, so
that C = {e1, e2}. In Example 4.3 of [24] it is shown that reg(S) = N2. This can also be computed
directly from the definition by relating H%(S) to the sheaf cohomology groups

HY (P! x P!, Op1,p1(a,b))
and using known vanishing theorems.

Example 5.7. When S is the homogeneous coordinate ring of the weighted projective space
P(qo,--.,qn), we have the free resolution 0 — S — S — 0. By the formula for weighted regu-
larity given in (5.4), we obtain

reg(S) =max{0—0} — >y o(gx —1) =n+1— >} Gk,
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where we are thinking of regularity as a number. In contrast, Example 4.2 of [24] uses topological
methods to compute Hj(S), with the result that

reg(S)={meZ|m>n+1->7} o},
now thinking of regularity as a set. These are clearly consistent. O

These examples have 0 € reg(S). However, Example 6.11 of [24] shows that this is not always
the case. It is not known if the class of an ample divisor always lies in reg(S). Another question
concerns the theory of generic initial ideals. Since many toric varieties have only the torus as
automorphism group (see Section 5.4 or Example 4.11 of [24]), the problem is to characterize those
toric varieties X for which Aut(X) is large enough to give a good theory of generic initial ideals.
The case of P x P™ is discussed in [1].

5.7. Minimal Generators. In the case of P", the regularity is a number, and (5.2) shows that
reg(M) is an upper bound for the degrees of the minimal generators of M. In the toric case,
Theorem 5.4 of [24] explains how minimal generators relate to regularity.

Theorem 5.4. If X is smooth, then the degrees of the minimal generators of M lie outside the set
l
reg(M) + U(Cj + K53,
j=1
The following example shows to what extent the regularity restricts the degrees of the minimal
generators.

Example 5.8. For P! x P! and S = C[z,y; 2, w], we will consider the ideal I = (zy,zw) C S.
According to Example 1.1 of [30], we have

reg(S/I) = (1,1) + N2,
It follows from Theorem 5.4 that the minimal generators of S/I do not lie in
(LD +N + (e +N) U (2 +N)) = ((2,1) + N¥) U ((1,2) + ).

Once we exclude this set, we still have infinitely many elements of N? to choose from. So the
regularity does not bound the degrees of the minimal generators in this case. O

In order to avoid this problem, the paper [30] uses “coarsenings” of the grading on S, which makes
S into a Z-graded algebra. This allows one to get bounds on degrees of the minimal generators as
well as bounds on the degrees of the higher syzygies.

5.8. Regularity and Resolutions. In Example 5.7, we were able to use a free resolution to
compute the regularity. Unfortunately, the relation between reg(M) and a free resolution of M is
more complicated for an arbitrary projective toric variety.

To state the result, we need some notation and terminology. First, an finitely generated S-module
M is B-torsion if BEM = {0} for k > 0. Then consider

0—F 2. % F %% Mo (5.5)
We say that (5.5) is a B-torsion resolution of M if:

(1) Each F; is a free graded S-module.

(2) (5.5) is a complex, i.e., 0; 0 9j4+1 = 0 for all 4.
(3) ker(9;)/im(0;4+1) is B-torison.

(4) 0y is surjective.
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Given such a resolution, write
¢
Fy =P S(—ai), ai; € Apa(X).

j=1
With this set-up, we have Theorem 1.5 of [24]:
Theorem 5.5. If ¢: {2,...,min{n+1,s}} = {1,...,£} is any function, then the intersection

Lo ¢ 4 min{n+1,s} ¢ ¢
m (a,oj +reg(S)) ﬂﬂ ﬂ (alj—ek +reg(S)) N ﬂ n m (aij—ek—e¢(2) —---—e¢(i)+reg(5))
j=1 k=1j=1 1=2 k=1j=1

is contained in reg(M).

This differs slightly from the result stated in [24]. T am grateful to the authors of [24] for sending
me the corrected version of the theorem.
Here is an example of how to use Theorem 5.5.

Example 5.9. Consider the ideal I = (zy, zw) C S = C[z, y; 2, w] from Example 5.8. Since zy, zw
are relatively prime, they form regular sequence. Hence their Koszul complex gives a resolution

0— S(—2,-2) — S(—2,0)®» S(0,-2) — S — S/I — 0. (5.6)
If ¢ : {2} — {1,2} is any map, then Theorem 5.5 implies that
N N((2,0) —er + N) N ((2,0) — ez + N?) N ((0,2) —e1 +N?) N ((0,2) — ea + N?) N
((2,2) —e1 — eg2) + N) N ((2,2) — €2 — ey + N°) = (2,2) + N C reg(S/1).

However, we saw in Example 5.8 that reg(S/I) = (1,1) + N2. Hence the subset (2,2) + N? coming
from (5.6) via Theorem 5.5 is a proper subset of reg(S/I). This shows that a free resolution does
not determine the regularity, unlike what happens in the case of P or P(qo,--.,qn)- O

We should mention that [24] discusses regularity for a more general class of multigraded rings
that includes the homogeneous coordinate ring of a toric variety as special cases. A good reference
for multigraded rings is [25].

5.9. Bigraded Regularity. We now concentrate on the bigraded ring S = C|z,y; z, w] that has
appeared in numerous examples in this lecture. The notion of bigraded regularity was first defined
in [22], where it was called weak regularity. This concept is close but not identical to what we get
by applying Definition 5.2 to P! x P!. The authors of [22] also define strong regularity, which they
are able to compute in terms of a free resolution.

In the bigraded case, there is also regularity vector, first considered by Aramova, Crona and De
Negri [1], then studied further in [27] and generalized in [31]. This can be defined from a minimal
bigraded free resolution

0 —Fy—-—F—M-—0
as follows. Write F; = ©;5(—ai;, —bij), where (—a;;, —b;j) € Z*. Then the resolution regularity
vector (this is the terminology of [31]) is

r = (r1,72),
where
r1 = max{a;; —i}, r2=max{b; —i}.
1] )

Results about r and its relation to Definition 5.2 are discussed in [19, 31].
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5.10. Bigraded Commutative Algebra. As we've seen, the concept of regularity is complicated
in the bigraded case. We will end this lecture with an example, taken from [8], that illustrates some
of the further difficulties of doing bigraded commutative algebra.

To understand the problems that will arise, we first consider what happens in P2. Suppose that
fo, f1, fo are homogeneous of degree 3 in R = Clz,y, z] (deg(z) = deg(y) = deg(z) = 1) that don’t
vanish simultaneously on P2. Then one can prove without difficulty that

e The Koszul complex of fy, fi, fo is exact, and
e The polynomials fy, f1, fo form a regular sequence.

The first bullet shows that the minimal free resolution of I = (fy, f1, fo) C R is given by
0 — R(—9) — R(—6)> — R(-3)> — I — 0.

It follows that the shape of the minimal free resolution is determined by the geometric assumption
that fo, f1, fo have no common zeros in P2,

Now switch to P! x P! and let fy, f1, fo be homogeneous polynomials in S = C[z,y; 2, w] of degree
(2,1) that don’t vanish simultaneously on P! x P!. In this case, one can prove (see [8]) that

e The Koszul complex of fy, f1, fo is not exact, and
e The polynomials fy, f1, fo do not form a regular sequence.

Furthermore, when vary over all triples fy, f1, fo satisfying our two conditions (degree (2,1) and
no common zeros on P! x P!), we first that there are two possible shapes for the minimal free
resolution of I = (fy, f1, f2) C S.

To state the precise result, let Sy ; be the graded piece of S in degree (2,1) and let Y C S be
the subvariety determined by the image of multiplication map Sz X So,1 — S2,1. We also have the
3-dimensional subspace W = Span(fy, f1, f2) C S2,1. One of the main results of [8] is that if WNY
has dimension 2 (which happens generically), then the minimial free resolution of I is

R(—6,-1)
R(—4,-3)3 &
0 — R(—6,-3) — ® — R(—4,-2)® = R(-2,-1)* =>TI -0,
R(—6,-2)? @
R(—3,-3)2

while if W NY has dimension 1 (the only other possibility given our hypotheses), then the minimial
free resolution is

R(—6,—1)
R(—4,-3)? &
0 — R(—6,-3) — ® — R(—4,-2)® - R(-2,-1)*—>T1—0.
R(—6,-2)? ®
R(—2,-3)

Hence the nice relation between the geometry (no common zeros) and the algebra (the shape of
the free resolution) is more complicated in the bigraded case.
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